Problem Set 5

due: May 28, 2018

Exercise 1

Fix $T \in \mathbb{N}$. For $x \in \mathbb{R}$, define $[x]_T$ as the unique $y \in [0, T)$ with $x \equiv y \mod T$. Show that:

- (a) $[x]_T = x T \lfloor x/T \rfloor$ for all $x \in \mathbb{R}$,
- (b) $[[x]_T]_T = [x]_T$ for all $x \in \mathbb{R}$,
- (c) $[x+nT]_T = [x]_T$ for all $n \in \mathbb{Z}, x \in \mathbb{R}$,
- (d) $[x+y]_T \leq [x]_T + [y]_T$ for all $x, y \in \mathbb{R}$,
- (e) $0 \leq \sum_{i=1}^{n} [x_i]_T [\sum_{i=1}^{n} x_i]_T \leq (n-1)T$ for all $n \in \mathbb{N}, x_1, \dots, x_n \in \mathbb{R}$.

Exercise 2

Let $\mathcal{E} = (V, E)$ be an event-activity network. Suppose that

- (1) $V = V_{\text{arr}} \cup V_{\text{dep}}$ and $\#V_{\text{arr}} = \#V_{\text{dep}}$,
- (2) $\#\delta^{-}(v) = 1$ for all $v \in V_{arr}$ and $\#\delta^{+}(v) = 1$ for all $v \in V_{dep}$.

Let $E_t := E \cap (V_{\text{arr}} \times V_{\text{dep}})$. Moreover, define a *circulation* in \mathcal{E} as a disjoint union of directed circuits in \mathcal{E} . Prove that there is a bijective map

{perfect matchings of (V, E_t) } \rightarrow {circulations in (V, E) visiting each vertex $v \in V$ }.

Exercise 3

Find a 2 × 2-matrix A over $\mathbb{Z}/10\mathbb{Z}$ such that $\#\{x \in (\mathbb{Z}/10\mathbb{Z})^2 \mid Ax = 0\} = 2.$

Please turn over!

5 points

5 points

3 points

Exercise 4

7 points

Let $\mathcal{E} = (V, E)$ denote the following event-activity network with period time T = 10:

Driving activities have a solid line, transfer activities are dashed. The lower bounds ℓ and upper bounds u on each activity are indicated as an interval $[\ell_e, u_e]$.

(a) Compute all solutions $\pi \in (\mathbb{Z}/10\mathbb{Z})^8$ satisfying

 $\pi_j - \pi_i \equiv_{10} \ell_{ij}$ for all driving activities $ij \in E$.

(b) Compute an optimal solution to the PESP on \mathcal{E} , where each transfer activity has weight 1 and each driving activity has weight 0.