Problem Set 6

due: June 4, 2018

Exercise 1

Fix an integer $k \geq 4$. Give a polynomial-time reduction from 3-VERTEX-COLORING to k-VERTEX-COLORING.

Hint: Use a complete graph K_{k-3} .

Exercise 2

Let G be a weakly connected directed graph with cyclomatic number μ . Let $\mathcal{B} = \{\gamma_1, \ldots, \gamma_\mu\}$ be a cycle basis for G such that for each $i = 1, ..., \mu$, there is an edge $e_i \in E(G)$ such that $\gamma_{i,e_i} = 1$ and $\gamma_{j,e_i} = 0$ for all $j \neq i$.

- (a) Prove that \mathcal{B} is a strictly fundamental basis.
- (b) Show that an arbitrary cycle basis is strictly fundamental if and only if its cycle matrix can be permuted in such a way that it has the $\mu \times \mu$ -identity matrix in its last columns.

Exercise 3

Consider for $n \in \mathbb{N}$ the following directed graph G_n :

$$V(G_n) := \{ I_k \mid k = 0, \dots, n-1 \} \cup \{ O_k \mid i = 0, \dots, n-1 \},$$

$$E(G_n) := \{ (O_k, O_{[k+1]_n}) \mid k = 0, \dots, n-1 \} \cup \{ (I_k, I_{[k+2]_n}) \mid k = 0, \dots, n-1 \},$$

$$\cup \{ (O_k, I_k) \mid k = 0, \dots, n-1 \}.$$

- (a) Draw G_5 .
- (b) Compute the cyclomatic number $\mu(G_n)$ for all $n \ge 5$.
- (c) For k = 0, ..., n 1, let C_k denote the oriented cycle

$$(I_k, I_{[k+2]_n}, O_{[k+2]_n}, O_{[k+3]_n}, O_{[k+4]_n}, \dots, O_k, I_k).$$

Show that

$$\mathcal{B}_n := \{ C_k \mid k = 0, \dots, n-1 \} \cup \{ (I_0, I_2, I_4, \dots, I_0) \}$$

is a cycle basis for G_n , where $n \ge 5$ is odd.

- (d) Compute the determinant of \mathcal{B}_5 .
- (e) [5 additional points] Compute the determinant of \mathcal{B}_n for any odd $n \geq 5$.

5 points

5 points

10 points