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6.2 Single-Depot Aperiodic Vehicle Scheduling

In an abstract formulation, the input for (single-depot) aperiodic vehicle scheduling consists of

• a finite set T of trips,

• an acyclic relation � on T × T , i.e., for all chains t1 � t2 � · · · � tr with r ≥ 2 holds
t1 6= tr.

For a pair (t1, t2) ∈ T × T , t1 � t2 should hold if and only if a vehicle can serve trip t2 after
having served t1. For example, suppose that the set T of trips comes with a time information
time information τdep, τarr : T → R indicating departure times at the first stop of a trip, and
arrival times at the last stop, respectively. Then one may define

t1 � t2 :⇔ τdep(t2)− τarr(t1) ≥ τmin(t1, t2),

where τmin(t1, t2) > 0 is a minimum turnaround time, e.g., the length of a deadhead trip from
the last stop of t2 to the first stop of t1, or the minimum driver break duration.

Definition 1. An aperiodic vehicle schedule is a collection S = {s1, . . . , sk} of chains

si = ti,1 � ti,2 � · · · � ti,ri , i = 1, . . . , k,

such that each trip in T occurs in exactly one chain in S.

The number of vehicles of an aperiodic vehicle schedule S = {s1, . . . , sk} is defined as ν(S) := k.

Definition 2. Given (T ,�) as above, the single-depot aperiodic vehicle scheduling problem is
to find an aperiodic vehicle schedule S minimizing ν(S).

Remark 3. It is clear that an aperiodic vehicle schedule exists, e.g., the trivial schedule S =
{t | t ∈ T} with ν(S) = |T |.

Network flow model

We will now model the single-depot aperiodic vehicle scheduling problem as a minimum cost
network flow problem: To this end, we build an event-activity network N (T ,�) as follows:

(1) Create two events p and q (depot nodes).

(2) For each t ∈ T , add a pull-out activity (p, dt), a driving activity (dt, at) and a pull-in activity
(at, q).

(3) For each (t1, t2) ∈ T with t1 � t2, add a turnaround activity (at1 , dt2).

Example 4. Consider the following event-activity network P with periodic timetable for a
period time of T = 10:
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In total, 4 trips are operated every 10 minutes. Construct T as the set of all 12 = 3 · 4
trips starting between 4:00 (included) and 4:30 (excluded). Then the depot nodes and driving
activities of the event-activity network N (T ,�) are as follows:

p q

d1

4:03
a1

4:11

d2

4:13
a2

4:21

d3

4:23
a3

4:31

d4

4:00
a4

4:08
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As relation �, we allow a turnaround between two trips t1 and t2 in T with corresponding
driving activities e1 and e2 in P if and only if the departure of t2 is not earlier than the arrival
of t1 and there is a turnaround activity in P from the target of e1 to the source of e2. For
example, the trip 4:03→4:11 is connected to 4:14→4:22 and 4:24→4:32, but not to 4:04→4:12
or 4:18→4:26. Adding the turnaround activites, N (T ,�) looks as follows:
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Finally, we introduce the pull-out and pull-in activities. They model driving a vehicle from a
depot to the first trip, and from the last trip back to the depot.
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Remark 5. As � is acyclic, the networkN (T ,�) is acyclic, i.e., it contains no directed circuits.

Theorem 6. Given (T ,�) as above, the single-depot aperiodic vehicle scheduling problem is
solved by finding a minimum value p-q-flow on N (T ,�) covering each driving activity exactly
once.

Proof. Since any driving activity is covered exactly once and N (T ,�) is acyclic, no feasible p-
q-flow contains a circulation and decomposes into edge-disjoint p-q-paths. Consequently, there
is a one-to-one correspondence between vehicle schedules for (T ,�) and feasible p-q-flows in
N (T ,�), where a chain corresponds to a p-q-path. The number of vehicles equals the number
of p-q-paths in the flow and can be measured by the total outflow at p, i.e., the value of the
flow.

In particular, the single-depot aperiodic vehicle scheduling problem can be solved by the
following integer program on N (T ,�) = (V,E) with driving activities Ed ⊆ E:

Minimize
∑

e∈δ+(p)

fe

s.t.
∑

e∈δ+(v)

fe −
∑

e∈δ−(v)

fe = 0, v ∈ V \ {p, q},

fe = 1, e ∈ Ed,
fe ∈ {0, 1}, e ∈ E \ Ed.

Remark 7. This is a standard network flow problem, so the constraint matrix of the above
integer program is totally unimodular. This means that the LP relaxation, i.e., relaxing to
fe ∈ [0, 1], is in fact integral.

Example 8. For the above example, this is a minimum value p-q-flow:
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The flow decomposes into 5 p-q-paths corresponding to 5 trip chains. Note that we already
considered this example in the context of periodic vehicle scheduling, where we also found 5 as
the minimum number of vehicles.
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Matching interpretation

As in periodic vehicle scheduling, there is a matching view on aperiodic vehicle scheduling.

Lemma 9. Consider N (T ,�) = (V,E) with driving activities Ed and turnaround activities
Et. Then the following numbers are equal:

(1) The minimum value of a p-q-flow covering each e ∈ Ed exactly once.

(2) |Ed| − |M |, where M is a maximum cardinality matching in the subnetwork (V,Et).

Proof. (1) ≥ (2): Let f be an optimal feasible p-q-flow with value ν. Then f decomposes into
ν paths which are edge-disjoint, and even pairwise vertex-disjoint outside of p and q. Any such
path uses activities in the following pattern:

pull-out → driving → turnaround → driving → turnaround → . . . → driving → pull-in.

A path using r driving activities hence contains r− 1 turnaround activities. The flow f covers
all driving activities exactly once, so it contains |Ed| driving activities and |Ed| − ν turnaround
activities. By the structure of N (T ,�), restricting f to (V,Et) is a matching. If M is a
maximum cardinality matching in (V,Et), we obtain hence |M | ≥ |Ed|−ν, i.e., ν ≥ |Ed|− |M |.

(2) ≥ (1): Let M be a maximum cardinality matching in (V,Et). Consider the p-q-flow f ′

obtained by the paths (p, dt, at, q) for all trips t ∈ T , i.e., the flow corresponding to the trivial
schedule. This flow has value |Ed|. Pick an edge (at1 , dt2) ∈ M and replace the two paths
(p, dt1 , at1 , q) and (p, dt2 , at2 , q) by the single path (p, dt1 , at1 , dt2 , at2 , q), so that the value of f ′

reduces by 1. This way, continue by replacing the two paths containing two matched trips by
a single path for each edge of M . The resulting p-q-flow is feasible and has value |Ed| − |M |.
Consequently, |Ed| − |M | ≥ ν.

Example 10. In the running example, this is the maximum cardinality matching obtained
from the above optimal p-q-flow:
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In (V,Et), only the 7 arrival vertices a1, a2, a4, a5, a7, a8, a9, a10 are non-isolated. All of these
vertices are matched, so that we obtain even a perfect matching (of the non-isolated vertices).
As there are 12 driving activities, the minimal number of vehicles equals 12− 7 = 5.

Summary: The single-depot vehicle scheduling problem can be solved by either computing
a minimum value network flow covering all driving activities exactly once, or by finding a
maximum cardinality matching of the subgraph given by the turnaround activities.
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Comparison of periodic and aperiodic scheduling

Consider an event-activity network P with driving activities Ed(P) and turnaround activities
Et(P). Suppose we are given a periodic timetable π on P w.r.t. some period time T with corre-
sponding activity durations x ≥ 0. For an integer n ∈ N, let Nn be the event-activity network
modeling the aperiodic vehicle scheduling problem for all periodic trips starting between time
0 (included) and time n · T (excluded) as in the running example above. Formally, we set

Tn := Ed(P)× {0, 1, . . . , n− 1},

and for t1 = (v1w1, i1), t2 = (v2w2, i2) ∈ Tn, we define

t1 � t2 :⇔ πv2 + i2T ≥ πv1 + xv1w1 + i1T and w1v2 ∈ Et(P),

and let Nn := N (Tn,�). Intuitively, we compare the "real aperiodic" departure time at v2 of
the periodic trip departing within the interval [i2T, i2T + T ) with the "real aperiodic" arrival
time at w1 of the periodic trip departing within [i1T, i1T + T ).

Lemma 11. Let Sp be an optimal periodic vehicle schedule for (P , T, π, x) and let Sa,n be an
optimal aperiodic vehicle schedule for (Tn,�). Then ν(Sa,n) ≤ ν(Sp).

Exercise. Find an example where ν(Sa,n) < ν(Sp). In particular, Ma,n is not a maximum
cardinality matching of Et(Nn).
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