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6.2 Single-Depot Aperiodic Vehicle Scheduling
In an abstract formulation, the input for (single-depot) aperiodic vehicle scheduling consists of
e a finite set T of trips,

e an acyclic relation < on 7 x T, i.e., for all chains t; <ty < --- < ¢, with » > 2 holds

t £t

For a pair (t1,t2) € T X T, t; =< t3 should hold if and only if a vehicle can serve trip ty after
having served t;. For example, suppose that the set 7 of trips comes with a time information
time information Tyep, Tarr : 7 — R indicating departure times at the first stop of a trip, and
arrival times at the last stop, respectively. Then one may define

tl j t2 = Tdep(tQ) — Tarr(tl) Z 7—rnin<t17 t2)7

where Tin(t1,t2) > 0 is a minimum turnaround time, e.g., the length of a deadhead trip from
the last stop of t5 to the first stop of ¢1, or the minimum driver break duration.

Definition 1. An aperiodic vehicle schedule is a collection S = {s1,...,s,} of chains
si=ti1 tig X 2ty t=1,...,k,

such that each trip in T occurs in exactly one chain in S.

The number of vehicles of an aperiodic vehicle schedule S = {sy, ..., s} is defined as v(S) := k.

Definition 2. Given (T, <) as above, the single-depot aperiodic vehicle scheduling problem is
to find an aperiodic vehicle schedule S minimizing v(S).

Remark 3. It is clear that an aperiodic vehicle schedule exists, e.g., the trivial schedule S =
{t|teT} with v(S)=|T|.
Network flow model

We will now model the single-depot aperiodic vehicle scheduling problem as a minimum cost
network flow problem: To this end, we build an event-activity network N (7T, <) as follows:

(1) Create two events p and ¢ (depot nodes).

(2) Foreacht € T, add a pull-out activity (p,d,), a driving activity (dy, a;) and a pull-in activity
(ata Q)

(3) For each (t1,t2) € T with t; < to, add a turnaround activity (ay,, dy,).

Example 4. Consider the following event-activity network P with periodic timetable for a
period time of T" = 10:
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In total, 4 trips are operated every 10 minutes. Construct 7 as the set of all 12 = 3 -4
trips starting between 4:00 (included) and 4:30 (excluded). Then the depot nodes and driving
activities of the event-activity network N (7T, <) are as follows:

4:03 4:11 4:13 4:21 4:23 4:31
(@) (1) (——®)
4:00 4:08 4:10 4:18 4:20 4:28

@ @ @ @
@ 4:04 4:12 4:14 4:22 4:24 4:32 @
® @ @ @

4:08 4:16 4:18 4:26 4:28 4:36

As relation <, we allow a turnaround between two trips t; and ¢, in 7 with corresponding
driving activities e; and es in P if and only if the departure of ¢, is not earlier than the arrival
of t; and there is a turnaround activity in P from the target of e; to the source of e;. For
example, the trip 4:03—4:11 is connected to 4:14—4:22 and 4:24—4:32, but not to 4:04—4:12
or 4:18—4:26. Adding the turnaround activites, N (T, <) looks as follows:

4:03 4:11 4:13 4:21 4:23 4:31

Finally, we introduce the pull-out and pull-in activities. They model driving a vehicle from a
depot to the first trip, and from the last trip back to the depot.
4:03 411 4:13 4:21 4:23 4:31
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Remark 5. As < is acyclic, the network N (T, <) is acyclic, i.e., it contains no directed circuits.

Theorem 6. Given (T,=) as above, the single-depot aperiodic vehicle scheduling problem is

solved by finding a minimum value p-q-flow on N (T, =) covering each driving activity exactly
once.

Proof. Since any driving activity is covered exactly once and N (T, <) is acyclic, no feasible p-
g-flow contains a circulation and decomposes into edge-disjoint p-¢g-paths. Consequently, there
is a one-to-one correspondence between vehicle schedules for (7, <) and feasible p-¢g-flows in
N(T, =), where a chain corresponds to a p-g-path. The number of vehicles equals the number

of p-g-paths in the flow and can be measured by the total outflow at p, i.e., the value of the
flow. O]

In particular, the single-depot aperiodic vehicle scheduling problem can be solved by the
following integer program on N (7, =) = (V, E) with driving activities F; C E:

Minimize Z fe
e€dt(p)
s.t. Z fe_ Z fezoa UGV\{paQ}v
e€d+(v) e€o—(v)
fe = 17 e c Ed7
fe € {0, 1}, ee B\ Ey.

Remark 7. This is a standard network flow problem, so the constraint matrix of the above
integer program is totally unimodular. This means that the LP relaxation, i.e., relaxing to
fe €[0,1], is in fact integral.

Example 8. For the above example, this is a minimum value p-g-flow:

4:03 4:11 4:13 4:21 4:23 4:31
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The flow decomposes into 5 p-g-paths corresponding to 5 trip chains. Note that we already

considered this example in the context of periodic vehicle scheduling, where we also found 5 as
the minimum number of vehicles.
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Matching interpretation

As in periodic vehicle scheduling, there is a matching view on aperiodic vehicle scheduling.

Lemma 9. Consider N(T,=) = (V, E) with driving activities Eq and turnaround activities
E;. Then the following numbers are equal:

(1) The minimum value of a p-q-flow covering each e € E4 exactly once.
(2) |Eq4| — |M|, where M is a mazimum cardinality matching in the subnetwork (V, Ey).

Proof. (1) > (2): Let f be an optimal feasible p-¢g-flow with value v. Then f decomposes into
v paths which are edge-disjoint, and even pairwise vertex-disjoint outside of p and ¢q. Any such
path uses activities in the following pattern:

pull-out — driving — turnaround — driving — turnaround — ... — driving — pull-in.

A path using r driving activities hence contains r — 1 turnaround activities. The flow f covers
all driving activities exactly once, so it contains |E,| driving activities and |Ey| — v turnaround
activities. By the structure of N(T, <), restricting f to (V, FE;) is a matching. If M is a
maximum cardinality matching in (V) E}), we obtain hence |M| > |Ey| — v, i.e., v > |Ey4| — |M]|.

(2) > (1): Let M be a maximum cardinality matching in (V, E;). Consider the p-¢g-flow f
obtained by the paths (p, dy, a;, q) for all trips t € T, i.e., the flow corresponding to the trivial
schedule. This flow has value |E;|. Pick an edge (as,di,) € M and replace the two paths
(p,ds,, as,,q) and (p,dy,, a,, q) by the single path (p,dy,, ay,,dy,, at,, q), so that the value of f’
reduces by 1. This way, continue by replacing the two paths containing two matched trips by
a single path for each edge of M. The resulting p-g-flow is feasible and has value |E4| — |M]|.
Consequently, |Ey| — |M| > v. O

Example 10. In the running example, this is the maximum cardinality matching obtained
from the above optimal p-g-flow:

4:03 4:11 4:13 4:21 4:23 4:31
4:00
@ 4:04

4:32 @

4:36

In (V) E;), only the 7 arrival vertices ay, as, a4, as, ar, ag, ag, ajo are non-isolated. All of these
vertices are matched, so that we obtain even a perfect matching (of the non-isolated vertices).
As there are 12 driving activities, the minimal number of vehicles equals 12 — 7 = 5.

Summary: The single-depot vehicle scheduling problem can be solved by either computing
a minimum value network flow covering all driving activities exactly once, or by finding a
maximum cardinality matching of the subgraph given by the turnaround activities.
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Comparison of periodic and aperiodic scheduling

Consider an event-activity network P with driving activities £;(P) and turnaround activities
E,(P). Suppose we are given a periodic timetable m on P w.r.t. some period time 7" with corre-
sponding activity durations x > 0. For an integer n € N, let V,, be the event-activity network
modeling the aperiodic vehicle scheduling problem for all periodic trips starting between time
0 (included) and time n - T" (excluded) as in the running example above. Formally, we set

Tn = E4(P)x{0,1,...,n—1},
and for t; = (viwy, 1), ts = (vows, is) € T,, we define
t1 2 to = Ty, T+ 1o > Ty, + Toyw, T W' and wyvy € Et(P),

and let NV, := N(T,, <). Intuitively, we compare the "real aperiodic" departure time at vy of
the periodic trip departing within the interval [i5T, 95T + T') with the "real aperiodic" arrival
time at wy of the periodic trip departing within [i,7, 4,7 + T').

Lemma 11. Let S, be an optimal periodic vehicle schedule for (P,T,m,x) and let S,, be an
optimal aperiodic vehicle schedule for (T, =). Then v(Sqn) < v(Sy).

Exercise. Find an example where v(S,,) < v(S,). In particular, M,, is not a maximum
cardinality matching of E;(N,,).



