Lecture 13

January 20, 2020

6.2 Single-Depot Aperiodic Vehicle Scheduling

In an abstract formulation, the input for (single-depot) aperiodic vehicle scheduling consists of

- a finite set \mathcal{T} of trips,
- an acyclic relation \preceq on $\mathcal{T} \times \mathcal{T}$, i.e., for all chains $t_{1} \preceq t_{2} \preceq \cdots \preceq t_{r}$ with $r \geq 2$ holds $t_{1} \neq t_{r}$.

For a pair $\left(t_{1}, t_{2}\right) \in \mathcal{T} \times \mathcal{T}, t_{1} \preceq t_{2}$ should hold if and only if a vehicle can serve trip t_{2} after having served t_{1}. For example, suppose that the set \mathcal{T} of trips comes with a time information time information $\tau_{\text {dep }}, \tau_{\text {arr }}: \mathcal{T} \rightarrow \mathbb{R}$ indicating departure times at the first stop of a trip, and arrival times at the last stop, respectively. Then one may define

$$
t_{1} \preceq t_{2} \quad: \Leftrightarrow \quad \tau_{\text {dep }}\left(t_{2}\right)-\tau_{\text {arr }}\left(t_{1}\right) \geq \tau_{\min }\left(t_{1}, t_{2}\right),
$$

where $\tau_{\min }\left(t_{1}, t_{2}\right)>0$ is a minimum turnaround time, e.g., the length of a deadhead trip from the last stop of t_{2} to the first stop of t_{1}, or the minimum driver break duration.

Definition 1. An aperiodic vehicle schedule is a collection $S=\left\{s_{1}, \ldots, s_{k}\right\}$ of chains

$$
s_{i}=t_{i, 1} \preceq t_{i, 2} \preceq \cdots \preceq t_{i, r_{i}}, \quad i=1, \ldots, k,
$$

such that each trip in \mathcal{T} occurs in exactly one chain in S.
The number of vehicles of an aperiodic vehicle schedule $S=\left\{s_{1}, \ldots, s_{k}\right\}$ is defined as $\nu(S):=k$.
Definition 2. Given (\mathcal{T}, \preceq) as above, the single-depot aperiodic vehicle scheduling problem is to find an aperiodic vehicle schedule S minimizing $\nu(S)$.
Remark 3. It is clear that an aperiodic vehicle schedule exists, e.g., the trivial schedule $S=$ $\{t \mid t \in T\}$ with $\nu(S)=|\mathcal{T}|$.

Network flow model

We will now model the single-depot aperiodic vehicle scheduling problem as a minimum cost network flow problem: To this end, we build an event-activity network $\mathcal{N}(\mathcal{T}, \preceq)$ as follows:
(1) Create two events p and q (depot nodes).
(2) For each $t \in \mathcal{T}$, add a pull-out activity $\left(p, d_{t}\right)$, a driving activity $\left(d_{t}, a_{t}\right)$ and a pull-in activity $\left(a_{t}, q\right)$.
(3) For each $\left(t_{1}, t_{2}\right) \in \mathcal{T}$ with $t_{1} \preceq t_{2}$, add a turnaround activity $\left(a_{t_{1}}, d_{t_{2}}\right)$.

Example 4. Consider the following event-activity network \mathcal{P} with periodic timetable for a period time of $T=10$:

In total, 4 trips are operated every 10 minutes. Construct \mathcal{T} as the set of all $12=3 \cdot 4$ trips starting between 4:00 (included) and 4:30 (excluded). Then the depot nodes and driving activities of the event-activity network $\mathcal{N}(\mathcal{T}, \preceq)$ are as follows:

As relation \preceq, we allow a turnaround between two trips t_{1} and t_{2} in \mathcal{T} with corresponding driving activities e_{1} and e_{2} in \mathcal{P} if and only if the departure of t_{2} is not earlier than the arrival of t_{1} and there is a turnaround activity in \mathcal{P} from the target of e_{1} to the source of e_{2}. For example, the trip $4: 03 \rightarrow 4: 11$ is connected to $4: 14 \rightarrow 4: 22$ and $4: 24 \rightarrow 4: 32$, but not to $4: 04 \rightarrow 4: 12$ or $4: 18 \rightarrow 4: 26$. Adding the turnaround activites, $\mathcal{N}(\mathcal{T}, \preceq)$ looks as follows:
(p)

Finally, we introduce the pull-out and pull-in activities. They model driving a vehicle from a depot to the first trip, and from the last trip back to the depot.

Remark 5. As \preceq is acyclic, the network $\mathcal{N}(\mathcal{T}, \preceq)$ is acyclic, i.e., it contains no directed circuits.
Theorem 6. Given (\mathcal{T}, \preceq) as above, the single-depot aperiodic vehicle scheduling problem is solved by finding a minimum value $p-q$-flow on $\mathcal{N}(\mathcal{T}, \preceq)$ covering each driving activity exactly once.

Proof. Since any driving activity is covered exactly once and $\mathcal{N}(\mathcal{T}, \preceq)$ is acyclic, no feasible p -q-flow contains a circulation and decomposes into edge-disjoint $p-q$-paths. Consequently, there is a one-to-one correspondence between vehicle schedules for (\mathcal{T}, \preceq) and feasible p - q-flows in $\mathcal{N}(\mathcal{T}, \preceq)$, where a chain corresponds to a $p-q$-path. The number of vehicles equals the number of $p-q$-paths in the flow and can be measured by the total outflow at p, i.e., the value of the flow.

In particular, the single-depot aperiodic vehicle scheduling problem can be solved by the following integer program on $\mathcal{N}(\mathcal{T}, \preceq)=(V, E)$ with driving activities $E_{d} \subseteq E$:

$$
\begin{array}{lr}
\text { Minimize } & \sum_{e \in \delta^{+}(p)} f_{e} \\
\text { s.t. } \sum_{e \in \delta^{+}(v)} f_{e}-\sum_{e \in \delta^{-}(v)} f_{e}=0, & v \in V \backslash\{p, q\}, \\
f_{e}=1, & e \in E_{d}, \\
f_{e} \in\{0,1\}, & e \in E \backslash E_{d} .
\end{array}
$$

Remark 7. This is a standard network flow problem, so the constraint matrix of the above integer program is totally unimodular. This means that the LP relaxation, i.e., relaxing to $f_{e} \in[0,1]$, is in fact integral.

Example 8. For the above example, this is a minimum value p - q-flow:

The flow decomposes into $5 p-q$-paths corresponding to 5 trip chains. Note that we already considered this example in the context of periodic vehicle scheduling, where we also found 5 as the minimum number of vehicles.

Matching interpretation

As in periodic vehicle scheduling, there is a matching view on aperiodic vehicle scheduling.
Lemma 9. Consider $\mathcal{N}(\mathcal{T}, \preceq)=(V, E)$ with driving activities E_{d} and turnaround activities E_{t}. Then the following numbers are equal:
(1) The minimum value of a p-q-flow covering each $e \in E_{d}$ exactly once.
(2) $\left|E_{d}\right|-|M|$, where M is a maximum cardinality matching in the subnetwork $\left(V, E_{t}\right)$.

Proof. (1) \geq (2): Let f be an optimal feasible $p-q$-flow with value ν. Then f decomposes into ν paths which are edge-disjoint, and even pairwise vertex-disjoint outside of p and q. Any such path uses activities in the following pattern:

$$
\text { pull-out } \rightarrow \text { driving } \rightarrow \text { turnaround } \rightarrow \text { driving } \rightarrow \text { turnaround } \rightarrow \ldots \rightarrow \text { driving } \rightarrow \text { pull-in. }
$$

A path using r driving activities hence contains $r-1$ turnaround activities. The flow f covers all driving activities exactly once, so it contains $\left|E_{d}\right|$ driving activities and $\left|E_{d}\right|-\nu$ turnaround activities. By the structure of $\mathcal{N}(\mathcal{T}, \preceq)$, restricting f to $\left(V, E_{t}\right)$ is a matching. If M is a maximum cardinality matching in $\left(V, E_{t}\right)$, we obtain hence $|M| \geq\left|E_{d}\right|-\nu$, i.e., $\nu \geq\left|E_{d}\right|-|M|$.
$(2) \geq(1)$: Let M be a maximum cardinality matching in $\left(V, E_{t}\right)$. Consider the $p-q$-flow f^{\prime} obtained by the paths $\left(p, d_{t}, a_{t}, q\right)$ for all trips $t \in T$, i.e., the flow corresponding to the trivial schedule. This flow has value $\left|E_{d}\right|$. Pick an edge $\left(a_{t_{1}}, d_{t_{2}}\right) \in M$ and replace the two paths $\left(p, d_{t_{1}}, a_{t_{1}}, q\right)$ and $\left(p, d_{t_{2}}, a_{t_{2}}, q\right)$ by the single path $\left(p, d_{t_{1}}, a_{t_{1}}, d_{t_{2}}, a_{t_{2}}, q\right)$, so that the value of f^{\prime} reduces by 1 . This way, continue by replacing the two paths containing two matched trips by a single path for each edge of M. The resulting p - q-flow is feasible and has value $\left|E_{d}\right|-|M|$. Consequently, $\left|E_{d}\right|-|M| \geq \nu$.

Example 10. In the running example, this is the maximum cardinality matching obtained from the above optimal $p-q$-flow:

In $\left(V, E_{t}\right)$, only the 7 arrival vertices $a_{1}, a_{2}, a_{4}, a_{5}, a_{7}, a_{8}, a_{9}, a_{10}$ are non-isolated. All of these vertices are matched, so that we obtain even a perfect matching (of the non-isolated vertices). As there are 12 driving activities, the minimal number of vehicles equals $12-7=5$.

Summary: The single-depot vehicle scheduling problem can be solved by either computing a minimum value network flow covering all driving activities exactly once, or by finding a maximum cardinality matching of the subgraph given by the turnaround activities.

Comparison of periodic and aperiodic scheduling

Consider an event-activity network \mathcal{P} with driving activities $E_{d}(\mathcal{P})$ and turnaround activities $E_{t}(\mathcal{P})$. Suppose we are given a periodic timetable π on \mathcal{P} w.r.t. some period time T with corresponding activity durations $x \geq 0$. For an integer $n \in \mathbb{N}$, let \mathcal{N}_{n} be the event-activity network modeling the aperiodic vehicle scheduling problem for all periodic trips starting between time 0 (included) and time $n \cdot T$ (excluded) as in the running example above. Formally, we set

$$
\mathcal{T}_{n}:=E_{d}(\mathcal{P}) \times\{0,1, \ldots, n-1\}
$$

and for $t_{1}=\left(v_{1} w_{1}, i_{1}\right), t_{2}=\left(v_{2} w_{2}, i_{2}\right) \in \mathcal{T}_{n}$, we define

$$
t_{1} \preceq t_{2} \quad: \Leftrightarrow \quad \pi_{v_{2}}+i_{2} T \geq \pi_{v_{1}}+x_{v_{1} w_{1}}+i_{1} T \quad \text { and } \quad w_{1} v_{2} \in E_{t}(\mathcal{P}),
$$

and let $\mathcal{N}_{n}:=\mathcal{N}\left(\mathcal{T}_{n}, \preceq\right)$. Intuitively, we compare the "real aperiodic" departure time at v_{2} of the periodic trip departing within the interval $\left[i_{2} T, i_{2} T+T\right)$ with the "real aperiodic" arrival time at w_{1} of the periodic trip departing within $\left[i_{1} T, i_{1} T+T\right)$.

Lemma 11. Let S_{p} be an optimal periodic vehicle schedule for (\mathcal{P}, T, π, x) and let $S_{a, n}$ be an optimal aperiodic vehicle schedule for $\left(\mathcal{T}_{n}, \preceq\right)$. Then $\nu\left(S_{a, n}\right) \leq \nu\left(S_{p}\right)$.

Exercise. Find an example where $\nu\left(S_{a, n}\right)<\nu\left(S_{p}\right)$. In particular, $M_{a, n}$ is not a maximum cardinality matching of $E_{t}\left(\mathcal{N}_{n}\right)$.

