Lecture 14

January 27, 2020

6.2 Single-Depot Aperiodic Vehicle Scheduling

Comparison of periodic and aperiodic scheduling

Consider an event-activity network \mathcal{P} with driving activities $E_{d}(\mathcal{P})$ and turnaround activities $E_{t}(\mathcal{P})$. Suppose we are given a periodic timetable π on \mathcal{P} w.r.t. some period time T with corresponding activity durations $x \geq 0$. For an integer $n \in \mathbb{N}$, let \mathcal{N}_{n} be the event-activity network modeling the aperiodic vehicle scheduling problem for all periodic trips starting between time 0 (included) and time $n \cdot T$ (excluded) as in the running example above. Formally, we set

$$
\mathcal{T}_{n}:=E_{d}(\mathcal{P}) \times\{0,1, \ldots, n-1\}
$$

and for $t_{1}=\left(v_{1} w_{1}, i_{1}\right), t_{2}=\left(v_{2} w_{2}, i_{2}\right) \in \mathcal{T}_{n}$, we define

$$
t_{1} \preceq t_{2} \quad: \Leftrightarrow \quad \pi_{v_{2}}+i_{2} T \geq \pi_{v_{1}}+x_{v_{1} w_{1}}+i_{1} T \quad \text { and } \quad w_{1} v_{2} \in E_{t}(\mathcal{P}),
$$

and let $\mathcal{N}_{n}:=\mathcal{N}\left(\mathcal{T}_{n}, \preceq\right)$. Intuitively, we compare the "real aperiodic" departure time at v_{2} of the periodic trip departing within the interval $\left[i_{2} T, i_{2} T+T\right)$ with the "real aperiodic" arrival time at w_{1} of the periodic trip departing within $\left[i_{1} T, i_{1} T+T\right)$.

Lemma 1. Let S_{p} be an optimal periodic vehicle schedule for (\mathcal{P}, T, π, x) and let $S_{a, n}$ be an optimal aperiodic vehicle schedule for $\left(\mathcal{T}_{n}, \preceq\right)$. Then $\nu\left(S_{a, n}\right) \leq \nu\left(S_{p}\right)$.

Proof. Let M_{p} be a minimum-weight perfect matching of $E_{t}(\mathcal{P})$ w.r.t. x. For each $w_{1} v_{2} \in M_{p}$, let $v_{1} w_{1}$ and $v_{2} w_{2}$ be the preceding and succeeding driving activities, respectively. Define

$$
M_{a, n}:=\left\{\left(\left(a_{v_{1} w_{1}}, i\right),\left(d_{v_{2} w_{2}}, i+p_{v_{1} w_{1}}+p_{w_{1} v_{2}}\right)\right) \mid w_{1} v_{2} \in M_{p}, i=0, \ldots, n-p_{v_{1} w_{1}}-p_{w_{1} v_{2}}-1\right\} .
$$

Recall that we defined the periodic offset of an activity $i j$ as $p_{i j}:=\left(x_{i j}+\pi_{i}-\pi_{j}\right) / T$.
We claim that $M_{a, n} \subseteq E_{t}\left(\mathcal{N}_{n}\right)$. We need to check that

$$
\pi_{v_{2}}+\left(i+p_{v_{1} w_{1}}+p_{w_{1} v_{2}}\right) T \geq \pi_{v_{1}}+x_{v_{1} w_{1}}+i T .
$$

Plugging in the definitions of $p_{v_{1} w_{1}}$ and $p_{w_{1} v_{2}}$,

$$
\pi_{v_{2}}+i T+x_{v_{1} w_{1}}+\pi_{v_{1}}-\pi_{w_{1}}+x_{w_{1} v_{2}}+\pi_{w_{1}}-\pi_{v_{2}} \geq \pi_{v_{1}}+x_{v_{1} w_{1}}+i T,
$$

or, equivalently,

$$
x_{w_{1} v_{2}} \geq 0,
$$

which is true by assumption.
It is clear that $M_{a, n}$ is a matching since M_{p} is. Let $S_{a, n}$ resp. S_{p} be optimal aperiodic resp.
periodic vehicle schedules. From the matching interpretations of (a)periodic vehicle scheduling, we obtain

$$
\nu\left(S_{p}\right)=\sum_{e \in E_{d}(\mathcal{P})} p_{e}+\sum_{e \in M_{p}} p_{e} .
$$

and

$$
\nu\left(S_{a, n}\right) \leq\left|E_{d}\left(\mathcal{N}_{n}\right)\right|-\left|M_{a, n}\right|=n\left|E_{d}(\mathcal{P})\right|-\left|M_{a, n}\right| .
$$

On the other hand, since M_{p} is a perfect matching,

$$
\left|M_{a, n}\right| \geq \sum_{e \in M_{p}}\left(n-p_{e}\right)-\sum_{e \in E_{d}(\mathcal{P})} p_{e}=n\left|M_{p}\right|-\nu\left(S_{p}\right)=n\left|E_{d}(\mathcal{P})\right|-\nu\left(S_{p}\right) .
$$

Therefore $\nu\left(S_{a, n}\right) \leq \nu\left(S_{p}\right)$.
Exercise. Find an example where $\nu\left(S_{a, n}\right)<\nu\left(S_{p}\right)$. In particular, $M_{a, n}$ is not a maximum cardinality matching of $E_{t}\left(\mathcal{N}_{n}\right)$.

Theorem 2 (~ Borndörfer, Karbstein, Liebchen, Lindner, 2018). Let S_{p} be an optimal periodic vehicle schedule for (\mathcal{P}, T, π, x) and let $S_{a, n}$ be an optimal aperiodic vehicle schedule for (\mathcal{T}_{n}, \preceq). Then $\nu\left(S_{a, n}\right)=\nu\left(S_{p}\right)$ for $n \gg 0$.

6.3 Multi-Depot Aperiodic Vehicle Scheduling

In the multi-depot case, we consider the following input data:

- a finite set \mathcal{T} of trips,
- an acyclic relation \preceq on $\mathcal{T} \times \mathcal{T}$,
- a finite set \mathcal{D} of depots,
- a map $D: \mathcal{T} \rightarrow \mathcal{P}(\mathcal{D})$ of feasible depots for each trip.

The depots can stand for actual physical depots, but also for vehicle types, and combinations of both. From this perspective and of course due to geographical reasons, it is reasonable to assume that not every trip can be served by an arbitrary depot.

Definition 3. Given $(\mathcal{T}, \preceq, \mathcal{D}, D)$ as above, the multi-depot vehicle scheduling problem is to find an aperiodic vehicle schedule S for (\mathcal{T}, \preceq) minimizing $\nu(S)$ such that for every chain $t_{1} \preceq \cdots \preceq t_{r}$ in S holds $D\left(t_{1}\right) \cap \cdots \cap D\left(t_{r}\right) \neq \emptyset$.

The condition $D\left(t_{1}\right) \cap \cdots \cap D\left(t_{r}\right) \neq \emptyset$ implies that there is at least one depot being feasible for the whole chain of trips.

6.3.1 Multi-commodity flow formulation

Again, we want to model the multi-depot vehicle scheduling problem as a network flow problem. We build an event-activity network $\mathcal{N}(\mathcal{T}, \preceq, \mathcal{D}, D)$ as follows:
(1) Create two depot nodes p_{d} and q_{d} for each depot $d \in \mathcal{D}$.
(2) Add driving activities $\left(d_{t}, a_{t}\right)$ for each trip $t \in \mathcal{T}$ (representing t).
(3) Add pull-out activities $\left(p_{d}, d_{t}\right)$ for each trip $t \in \mathcal{T}$ and each $d \in \mathcal{D}(t)$.
(4) Add pull-in activities $\left(a_{t}, q_{d}\right)$ for each trip $t \in \mathcal{T}$ and each $d \in \mathcal{D}(t)$.
(5) Add turnaround activities $\left(a_{t_{1}}, d_{t_{2}}\right)$ for each pair $\left(t_{1}, t_{2}\right) \in \mathcal{T} \times T$ with $t_{1} \preceq t_{2}$.

Example 4. The following is an example network with two depots:

The first idea is to cover all driving activities of $\mathcal{N}(\mathcal{T}, \preceq, \mathcal{D}, D)$ exactly once by a minimum value flow with sources at the nodes p_{d} and sinks at the sources q_{d}. However, such a flow does not necessarily respect the condition that every trip is served by a feasible depot: While this is true by construction for the first driving activity after pulling out and the last driving activity before pulling in, this is not guaranteed for intermediate driving activities. Moreover, such a flow might not decompose into edge-disjoint $p_{d^{-}} q_{d}$-paths: If two depots $d \neq d^{\prime}$ are feasible for some sequence of trips, vehicles starting at p_{d} might end up at q_{d}^{\prime}.

What we need here is one flow for each depot $d \in \mathcal{D}$, and all driving activities along each $p_{d}-q_{d}$-flow represent trips for which d is feasible. So we have to look simultaneously for $|\mathcal{D}|$ flows and select for each flow which activities are feasible.

Let $\mathcal{N}(\mathcal{T}, \preceq, \mathcal{D}, D)=(V, E)$ with driving activities E_{d}. For each depot $d \in \mathcal{D}$, consider a flow f^{d} represented by binary variables $f_{e}^{d} \in\{0,1\}$ for each $e \in E$. We can now formulate the
multi-depot vehicle scheduling problem as integer program:

$$
\begin{array}{ll}
\text { Minimize } & \sum_{d \in \mathcal{D}} \sum_{e \in \delta^{+}\left(p_{d}\right)} f_{e}^{d} \\
\text { s.t. } \sum_{e \in \delta^{+}(v)} f_{e}^{d}-\sum_{e \in \delta^{-}(v)} f_{e}^{d}=0, & d \in \mathcal{D}, v \in V \backslash\left\{p_{d}, q_{d}\right\} \\
\sum_{d \in \mathcal{D}(t)} f_{e}^{d}=1, & e \in E_{d} \text { representing } t \\
\sum_{d \notin \mathcal{D}(t)} f_{e}^{d}=0, & e \in E_{d} \text { representing } t \\
f_{e}^{d} \in\{0,1\}, & d \in \mathcal{D}, e \in E
\end{array}
$$

This is an example of a multi-commodity flow problem, i.e., there are several flows which are typically coupled by capacity constraints involving more than one flow.

Theorem 5. The multi-depot vehicle scheduling problem is solved by the above integer program.
Proof. Let S be an optimal vehicle schedule and set $f_{e}^{d}:=0$ for all $e \in E$ and $d \in \mathcal{D}$. For each chain $t_{1} \preceq \cdots \preceq t_{r}$ in S, select a depot $d \in \mathcal{D}$ feasible for the whole chain. Augment the flow f^{d} by 1 on the path ($p_{d}, d_{t_{1}}, a_{t_{1}}, d_{t_{2}}, a_{t_{2}}, \ldots, d_{t_{r}}, a_{t_{r}}, q_{d}$). Proceeding for all chains yields a feasible flow of objective value $\nu(S)$.
Conversely, let $f=\left(f^{d}\right)_{d \in \mathcal{D}}$ be an optimal multi-commodity flow with objective value c. By the structure of the event-activity network, each f^{d} decomposes into edge-disjoint paths, and all driving activities a.k.a. trips along such a path have d as a common feasible depot. In particular, f gives rise to a vehicle schedule requiring c vehicles. Note that for f^{d}, the single paths are not necessarily $p_{d}-q_{d}$-paths, but we may change the source to p_{d} and the sink to q_{d} without affecting feasibility or optimality.

Remark 6. There are instances of two-commodity flow problems, i.e. of two coupled network flows, where the solution to the LP relaxation is not integral. In fact, finding an optimal integral two-commodity flow is NP-hard, even if all capacities are 1 (Even, Itai, Shamir, 1975).

Example 7. There is an optimal 2-commodity flow for the previous example decomposing into $3 p_{1}-q_{1}$-paths and $3 p_{2}-q_{2}$-paths, hence requiring in total 6 vehicles.

