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6.2 Single-Depot Aperiodic Vehicle Scheduling

Comparison of periodic and aperiodic scheduling

Consider an event-activity network P with driving activities Ed(P) and turnaround activities
Et(P). Suppose we are given a periodic timetable π on P w.r.t. some period time T with corre-
sponding activity durations x ≥ 0. For an integer n ∈ N, let Nn be the event-activity network
modeling the aperiodic vehicle scheduling problem for all periodic trips starting between time
0 (included) and time n · T (excluded) as in the running example above. Formally, we set

Tn := Ed(P)× {0, 1, . . . , n− 1},

and for t1 = (v1w1, i1), t2 = (v2w2, i2) ∈ Tn, we define

t1 � t2 :⇔ πv2 + i2T ≥ πv1 + xv1w1 + i1T and w1v2 ∈ Et(P),

and let Nn := N (Tn,�). Intuitively, we compare the "real aperiodic" departure time at v2 of
the periodic trip departing within the interval [i2T, i2T + T ) with the "real aperiodic" arrival
time at w1 of the periodic trip departing within [i1T, i1T + T ).

Lemma 1. Let Sp be an optimal periodic vehicle schedule for (P , T, π, x) and let Sa,n be an
optimal aperiodic vehicle schedule for (Tn,�). Then ν(Sa,n) ≤ ν(Sp).

Proof. Let Mp be a minimum-weight perfect matching of Et(P) w.r.t. x. For each w1v2 ∈Mp,
let v1w1 and v2w2 be the preceding and succeeding driving activities, respectively. Define

Ma,n := {((av1w1 , i), (dv2w2 , i+ pv1w1 + pw1v2)) | w1v2 ∈Mp, i = 0, . . . , n− pv1w1 − pw1v2 − 1}.

Recall that we defined the periodic offset of an activity ij as pij := (xij + πi − πj)/T .

We claim that Ma,n ⊆ Et(Nn). We need to check that

πv2 + (i+ pv1w1 + pw1v2)T ≥ πv1 + xv1w1 + iT.

Plugging in the definitions of pv1w1 and pw1v2 ,

πv2 + iT + xv1w1 + πv1 − πw1 + xw1v2 + πw1 − πv2 ≥ πv1 + xv1w1 + iT,

or, equivalently,
xw1v2 ≥ 0,

which is true by assumption.

It is clear that Ma,n is a matching since Mp is. Let Sa,n resp. Sp be optimal aperiodic resp.
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periodic vehicle schedules. From the matching interpretations of (a)periodic vehicle scheduling,
we obtain

ν(Sp) =
∑

e∈Ed(P)

pe +
∑
e∈Mp

pe.

and
ν(Sa,n) ≤ |Ed(Nn)| − |Ma,n| = n|Ed(P)| − |Ma,n|.

On the other hand, since Mp is a perfect matching,

|Ma,n| ≥
∑
e∈Mp

(n− pe)−
∑

e∈Ed(P)

pe = n|Mp| − ν(Sp) = n|Ed(P)| − ν(Sp).

Therefore ν(Sa,n) ≤ ν(Sp).

Exercise. Find an example where ν(Sa,n) < ν(Sp). In particular, Ma,n is not a maximum
cardinality matching of Et(Nn).

Theorem 2 (∼ Borndörfer, Karbstein, Liebchen, Lindner, 2018). Let Sp be an optimal periodic
vehicle schedule for (P , T, π, x) and let Sa,n be an optimal aperiodic vehicle schedule for (Tn,�).
Then ν(Sa,n) = ν(Sp) for n� 0.

6.3 Multi-Depot Aperiodic Vehicle Scheduling

In the multi-depot case, we consider the following input data:

• a finite set T of trips,

• an acyclic relation � on T × T ,

• a finite set D of depots,

• a map D : T → P(D) of feasible depots for each trip.

The depots can stand for actual physical depots, but also for vehicle types, and combinations
of both. From this perspective and of course due to geographical reasons, it is reasonable to
assume that not every trip can be served by an arbitrary depot.

Definition 3. Given (T ,�,D, D) as above, the multi-depot vehicle scheduling problem is
to find an aperiodic vehicle schedule S for (T ,�) minimizing ν(S) such that for every chain
t1 � · · · � tr in S holds D(t1) ∩ · · · ∩D(tr) 6= ∅.

The condition D(t1)∩ · · · ∩D(tr) 6= ∅ implies that there is at least one depot being feasible
for the whole chain of trips.
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6.3.1 Multi-commodity flow formulation

Again, we want to model the multi-depot vehicle scheduling problem as a network flow problem.
We build an event-activity network N (T ,�,D, D) as follows:

(1) Create two depot nodes pd and qd for each depot d ∈ D.

(2) Add driving activities (dt, at) for each trip t ∈ T (representing t).

(3) Add pull-out activities (pd, dt) for each trip t ∈ T and each d ∈ D(t).

(4) Add pull-in activities (at, qd) for each trip t ∈ T and each d ∈ D(t).

(5) Add turnaround activities (at1 , dt2) for each pair (t1, t2) ∈ T × T with t1 � t2.

Example 4. The following is an example network with two depots:

p1

p2

q1

q2

d1

4:03
a1

4:11

d2

4:13
a2

4:21

d3

4:23
a3

4:31

d4

4:00
a4

4:08

d5

4:10
a5

4:18

d6

4:20
a6

4:28

d7

4:04
a7

4:12

d8

4:14
a8

4:22

d9

4:24
a9

4:32

d10

4:08

a10

4:16

d11

4:18

a11

4:26

d12

4:28

a12

4:36

The first idea is to cover all driving activities of N (T ,�,D, D) exactly once by a minimum
value flow with sources at the nodes pd and sinks at the sources qd. However, such a flow does
not necessarily respect the condition that every trip is served by a feasible depot: While this is
true by construction for the first driving activity after pulling out and the last driving activity
before pulling in, this is not guaranteed for intermediate driving activities. Moreover, such a
flow might not decompose into edge-disjoint pd-qd-paths: If two depots d 6= d′ are feasible for
some sequence of trips, vehicles starting at pd might end up at q′d.

What we need here is one flow for each depot d ∈ D, and all driving activities along each
pd-qd-flow represent trips for which d is feasible. So we have to look simultaneously for |D| flows
and select for each flow which activities are feasible.

Let N (T ,�,D, D) = (V,E) with driving activities Ed. For each depot d ∈ D, consider a
flow fd represented by binary variables fde ∈ {0, 1} for each e ∈ E. We can now formulate the

3



Optimal Tours in Graphs
kvv.imp.fu-berlin.de/x/92kN1e

Dr. Niels Lindner (lindner@zib.de)
Pedro Maristany de las Casas (maristany@zib.de)

multi-depot vehicle scheduling problem as integer program:

Minimize
∑
d∈D

∑
e∈δ+(pd)

fde

s.t.
∑

e∈δ+(v)

fde −
∑

e∈δ−(v)

fde = 0, d ∈ D, v ∈ V \ {pd, qd},∑
d∈D(t)

fde = 1, e ∈ Ed representing t,

∑
d/∈D(t)

fde = 0, e ∈ Ed representing t,

fde ∈ {0, 1}, d ∈ D, e ∈ E.

This is an example of a multi-commodity flow problem, i.e., there are several flows which are
typically coupled by capacity constraints involving more than one flow.

Theorem 5. The multi-depot vehicle scheduling problem is solved by the above integer program.

Proof. Let S be an optimal vehicle schedule and set fde := 0 for all e ∈ E and d ∈ D. For each
chain t1 � · · · � tr in S, select a depot d ∈ D feasible for the whole chain. Augment the flow fd

by 1 on the path (pd, dt1 , at1 , dt2 , at2 , . . . , dtr , atr , qd). Proceeding for all chains yields a feasible
flow of objective value ν(S).

Conversely, let f = (fd)d∈D be an optimal multi-commodity flow with objective value c. By
the structure of the event-activity network, each fd decomposes into edge-disjoint paths, and
all driving activities a.k.a. trips along such a path have d as a common feasible depot. In
particular, f gives rise to a vehicle schedule requiring c vehicles. Note that for fd, the single
paths are not necessarily pd-qd-paths, but we may change the source to pd and the sink to qd
without affecting feasibility or optimality.

Remark 6. There are instances of two-commodity flow problems, i.e. of two coupled network
flows, where the solution to the LP relaxation is not integral. In fact, finding an optimal integral
two-commodity flow is NP-hard, even if all capacities are 1 (Even, Itai, Shamir, 1975).

Example 7. There is an optimal 2-commodity flow for the previous example decomposing into
3 p1-q1-paths and 3 p2-q2-paths, hence requiring in total 6 vehicles.
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