
Optimal Tours in Graphs
kvv.imp.fu-berlin.de/x/92kN1e

Dr. Niels Lindner (lindner@zib.de)
Pedro Maristany de las Casas (maristany@zib.de)

Lecture 15
February 3, 2020

6.3 Multi-Depot Aperiodic Vehicle Scheduling

6.3.2 Path-based multi-commodity flow

For the multi-depot vehicle scheduling problem, any feasible multi-commodity flow can be
transformed into a set of certain pd-qd-paths. Let Pd denote the set of all pd-qd-paths for a
depot d ∈ D.

Corollary 1. The multi-depot vehicle scheduling problem is solved by finding subsets Pd ⊆ Pd
for each d ∈ D such that

(1) For each trip t ∈ T there is a feasible depot d ∈ D(t) such that (dt, at) ∈ E(p) for some
p ∈ Pd, and

(2)
∑

d∈D |Pd| is minimum.

For an edge e = (dt, at) ∈ Ed, define Pe :=
⋃
d∈D(t){p ∈ Pd | e ∈ E(p)}. Then the

multi-depot vehicle scheduling problem is solved by

Minimize
∑
d∈D

∑
p∈Pd

fp

s.t.
∑
p∈Pe

fp = 1, e ∈ Ed,

fp ∈ {0, 1}, p ∈ Pd, d ∈ D.

This is the path-based multi-commodity flow formulation of the multi-depot vehicle scheduling
problem, sometimes also called set partitioning formulation. Note however that the number of
paths is enormous (typically exponential), so that it is hard – or simply impossible – to write
down all variables and constraints explicitly. On the other hand, almost all variables fp will be
set to 0 in any feasible solution: Since the trivial schedule uses |Ed| paths, and we minimize
the number of total paths, an optimal solution will have at most |Ed| non-zero variables.

Solving the LP relaxation, e.g., in the context of branch-and-bound, can be achieved by tech-
niques such as column generation (according to a 2012 survey of Nemhauser, invented by Ford
and Fulkerson, 1971).

Column Generation

Starting with variables restricted to any feasible solution, e.g., the trivial schedule, where
vehicles immediately pull in after their first trip, one determines which variable (column) to
add to the problem in order to decrease the objective value (pricing). In other words, we solve
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first the LP relaxation

Minimize
∑
p∈P ′

fp

s.t.
∑

p∈Pe∩P ′
fp = 1, e ∈ Ed,

fp ≥ 0, p ∈ P ′.

for a subset P ′ ⊆ P :=
⋃
d∈D Pd of paths. The optimal solution f ∗ corresponds to an optimal

solution x∗ to the dual LP

Maximize
∑
e∈Ed

xe

s.t.
∑

e∈Ed∩E(p)

xe ≤ 1, p ∈ P ′.

Although f ∗ is always feasible for the unrestricted primal LP, x∗ might not be feasible for the
unrestricted dual LP, i.e., there is a path p ∈ P \P ′ such that

∑
e∈Ed∩E(p) x

∗
e > 1. If x∗ happens

to be feasible for the unrestricted dual LP, then, by LP duality, f ∗ must have been optimal for
the unrestricted primal LP, and vice versa. Hence

f ∗ is optimal for the unrestricted primal LP
⇔ x∗ is feasible for the unrestricted primal LP

⇔ ∀p ∈ P :
∑

e∈Ed∩E(p)

x∗e ≤ 1

⇔ max
p∈P

∑
e∈Ed∩E(p)

x∗e ≤ 1.

The pricing problem is hence to find a longest path p∗ ∈ P w.r.t. the costs given by x∗ on the
driving activities and 0 on all other activities. If p∗ has cost ≤ 1, then f ∗ has been optimal for
the unrestricted LP. Otherwise, we can add the variable fp∗ to the primal LP and the constraint
for p∗ to the dual LP, and repeat.

Since the network is acyclic, this longest path problem w.r.t. x∗ can be found in polynomial
time: Simply look for a shortest path with costs −x∗. There are no negative cost cycles, as
there are no directed cycles at all. In fact, there is even a linear time algorithm based on
topological search. We will discuss topological search in detail as a shortest path algorithm
for public transportation networks next semester, and column generation for multi-commodity
flow will return in the context of line planning.

Extensions

Our multi-depot aperiodic vehicle scheduling model can easily be extended to cope with the
following aspects:
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• Depot capacities : A maximum number κd of vehicles that can be parked/maintained at
a depot d ∈ D can be modeled by requiring∑

p∈Pd

fp ≤ κd.

• Multiple vehicle types : Modeled by "virtual" depots for each feasible pair of vehicle type
and depot.

• Operational costs : Path-depending costs cp (e.g., fuel) can be dealt with by minimizing∑
p cpfp. Note that this makes the pricing problem hard unless the costs are aggregated

from the edges.

• Route constraints : Remove paths violating, e.g., length constraints. In this case, the
pricing problem becomes now a resource-constrained shortest path problem, which is NP-
hard even on directed acyclic graphs.

• Electric vehicle scheduling : In principle, the path-based multi-commodity flow version is
general enough to deal with the special needs of electric vehicles. Recharging batteries
of electric vehicles can either be done in a depot, or on dedicated recharging stations
typically located at endpoints of lines. Both versions can be modeled by restricting the
set of feasible paths P . A simple way is to bound the lengths of the paths conforming to
the vehicle ranges. However, more detailed models price or pre-compute the paths taking
into account battery capacities, current state of charge, energy consumption, as well as
time constraints and overcrowding at recharging stations.

• Duty scheduling : Duties of drivers, pilots, conductors etc. are sequences of duty elements.
E.g., a duty for a bus driver could be to drive a bus from A to B, and later another
one from B to C. Of course, several constraints have to be met concerning, e.g., breaks,
hours of work, night and weekend duties and so on. However, in principle, scheduling
duties for drivers means to find certain feasible sequences of (partial) trips, so that the
problem is very similar to vehicle scheduling. In fact, both problems can be treated in an
integrated way, i.e., vehicle and duty paths can be computed within the same optimization
problem, and even on the same acyclic network (see e.g., Borndörfer, Löbel, Weider, 2008).
However, regulations for duties produce more sophisticated pricing problems.

• Crew scheduling : The task of crew scheduling is to assign real people to duties. Again,
this can be modeled as a multi-commodity flow or set partitioning problem similar to
vehicle scheduling, taking into account the special requirements of the employees: For
example, drivers should not be scheduled too far away from their homebases, there must
be sufficient leisure time between two duties etc.

6.4 Vehicle Routing

A generalization of both ATSP and Single-Depot Vehicle Scheduling is the Vehicle Routing
Problem. The problem dates back to Dantzig and Ramser (1959). Starting from a depot, a
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fleet of trucks needs to deliver goods to customers, taking into account truck capacities and the
total distance traveled. Mathematically, the problem is formulated as follows:

Definition 2. Given

• a complete digraph K∗n on the vertices V (K∗n) = {0, 1, . . . , n− 1},

• a cost function c : E(K∗n)→ R≥0,

• a demand function q : V (K∗n)→ R≥0 with q(0) = 0,

• a vehicle capacity Q ≥ 0,

• a fleet size K ∈ N,

the Capacitated Vehicle Routing Problem (CVRP) is to find a set {C1, . . . , CK} of directed
circuits such that

(1) 0 ∈ Ci, i = 1, . . . , K,

(2)
∑

v∈V (Ci)
qv ≤ Q, , i = 1, . . . , K,

(3) V (Ci) ∩ V (Cj) = {0}, i 6= j,

(4)
⋃K
i=1 V (Ci) = V (K∗n),

(5)
∑K

i=1

∑
e∈E(Ci)

c(e) is minimum.

Example 3. For K = 1 and q ≡ 0, this is nothing but ATSP. In Exercise 2 on Problem Set
13, the connection with single-periodic vehicle scheduling has been outlined.

Integer Programming Formulations

The following is an integer programming formulation of CVRP:

Minimize
∑

e∈E(K∗n)

cexe

s.t.
∑

e∈δ+(v)

xe = 1, v ∈ V (K∗n) \ {0},∑
e∈δ−(v)

xe = 1, v ∈ V (K∗n) \ {0},∑
e∈δ+(0)

xe = K,

∑
e∈δ+(S)

xe ≥ r(S), ∅ 6= S ⊆ V (K∗n) \ {0},

xe ∈ {0, 1}, e ∈ E(K∗n).
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Here, r(S) denotes the number vehicles necessary for covering the demand at S. A precise
value for r(S) can be obtained by solving the bin packing problem with bins of capacity Q and
item weights q. Observe that r(S) ≥ d

∑
v∈S q(v)/Qe ≥ 1. In particular, every feasible solution

x of the above integer program satisfies the subtour elimination constraints∑
e∈δ+(S)

xe ≥ 1, ∅ 6= S ⊆ V (K∗n) \ {0}.

On the computational side, many TSP heuristics carry over to vehicle routing, and various
specific cuts are known, see, e.g., the survey book by Toth and Vigo (2002).

From the path-based or set partitioning perspective, let C be the set of feasible routes, i.e.,
the set of directed circuits C such that 0 ∈ V (C) and

∑
v∈V qv ≤ Q. Then CVRP can be

written as the following path-based integer program:

Minimize
∑
C∈C

∑
e∈E(C)

ceyC

s.t.
∑

C∈C: v∈V (C)

yC ≥ 1, v ∈ V (K∗n) \ {0},

,
∑
C∈C

yC = K,

yC ∈ {0, 1}, C ∈ C.

Again, the size of C is exponential, and solving this IP will require column generation.

Dial-a-Ride, or Ride Pooling

The dial-a-ride problem (DARP) combines pickup and delivery of passengers. Examples are
US-style school buses, transport services for disabled people, or ride pooling such as BerlKönig
or CleverShuttle. In addition to the requirements of capacitated vehicle routing, the following
has to be respected in a DARP (Doerner and Salazar-González, 2002):

(1) Pickup-Delivery-Coupling: Pickup and delivery of a customer must be accomplished by the
same vehicle.

(2) Precedence: Each customer must be picked up before being delivered.

(3) Time windows: Pickup and delivery should lie within given time intervals.

(4) Maximum travel time: The time a costumer spends in a vehicle should not be too large.

If all these constraints are considered hard, i.e., mandatory for any feasible solution, then
DARP can be modeled as a CVRP with the additional constraints∑

e∈R

xe ≤ |R| − 1, R ∈ R,
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where R is a set containing (sub)routes R violating one of the above conditions. For example,
the coupling constraint can be modeled as∑

e∈E[S]

xe ≤ |S| − 1

for all subsets S ⊆ V (K∗n) containing 0 and some pick-up vertex v, but not the corresponding
delivery vertex for v. Unsurprisingly, these constraints cannot be written down explicitly, but
they can be used in a cutting plane approach: The coupling constraints can be separated by
minimum cuts just as the subtour elimination constraints for TSP. To check whether a given
route satisfies time window and maximum travel time constraints, one can solve a shortest path
problem on a vertex-weighted interval graph (Firat and Woeginger, 2011).
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