
Traffic Optimization:

Optimal Tours in Graphs

Niels Lindner

Lecture 8
December 2, 2019

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 1 / 44

Chapter 4

Linear and Integer Programming

§4.1 Linear Programming (Recall)

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 2 / 44

§4.1 Linear Programming (Recall)

Polyhedra

A (convex) polyhedron in Rn is the set

{x ∈ Rn | Ax ≤ b}

for some matrix A ∈ Rm×n and a vector b ∈ Rm. A bounded polyhedron is
called a polytope.

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 3 / 44

§4.1 Linear Programming (Recall)

Polyhedra
A (convex) polyhedron in Rn is the set

{x ∈ Rn | Ax ≤ b}

for some matrix A ∈ Rm×n and a vector b ∈ Rm. A bounded polyhedron is
called a polytope.

x1

x2

−x2 ≤ 0 (1)

−x1 − x2 ≤ −1 (2)

−x1 + x2 ≤ 3 (3)

x1 ≤ 3 (4)

x1 + 2x2 ≤ 9 (5)

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 3 / 44

§4.1 Linear Programming (Recall)

Polyhedra
A (convex) polyhedron in Rn is the set

{x ∈ Rn | Ax ≤ b}

for some matrix A ∈ Rm×n and a vector b ∈ Rm. A bounded polyhedron is
called a polytope.

x1

x2

(1)

−x2 ≤ 0 (1)

−x1 − x2 ≤ −1 (2)

−x1 + x2 ≤ 3 (3)

x1 ≤ 3 (4)

x1 + 2x2 ≤ 9 (5)

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 3 / 44

§4.1 Linear Programming (Recall)

Polyhedra
A (convex) polyhedron in Rn is the set

{x ∈ Rn | Ax ≤ b}

for some matrix A ∈ Rm×n and a vector b ∈ Rm. A bounded polyhedron is
called a polytope.

x1

x2

(1)

(2)

−x2 ≤ 0 (1)

−x1 − x2 ≤ −1 (2)

−x1 + x2 ≤ 3 (3)

x1 ≤ 3 (4)

x1 + 2x2 ≤ 9 (5)

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 3 / 44

§4.1 Linear Programming (Recall)

Polyhedra
A (convex) polyhedron in Rn is the set

{x ∈ Rn | Ax ≤ b}

for some matrix A ∈ Rm×n and a vector b ∈ Rm. A bounded polyhedron is
called a polytope.

x1

x2

(1)

(2)

(3
)

−x2 ≤ 0 (1)

−x1 − x2 ≤ −1 (2)

−x1 + x2 ≤ 3 (3)

x1 ≤ 3 (4)

x1 + 2x2 ≤ 9 (5)

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 3 / 44

§4.1 Linear Programming (Recall)

Polyhedra
A (convex) polyhedron in Rn is the set

{x ∈ Rn | Ax ≤ b}

for some matrix A ∈ Rm×n and a vector b ∈ Rm. A bounded polyhedron is
called a polytope.

x1

x2

(1)

(2)

(3
)

(4
)

−x2 ≤ 0 (1)

−x1 − x2 ≤ −1 (2)

−x1 + x2 ≤ 3 (3)

x1 ≤ 3 (4)

x1 + 2x2 ≤ 9 (5)

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 3 / 44

§4.1 Linear Programming (Recall)

Polyhedra
A (convex) polyhedron in Rn is the set

{x ∈ Rn | Ax ≤ b}

for some matrix A ∈ Rm×n and a vector b ∈ Rm. A bounded polyhedron is
called a polytope.

x1

x2

(1)

(2)

(3
)

(4
)

(5) −x2 ≤ 0 (1)

−x1 − x2 ≤ −1 (2)

−x1 + x2 ≤ 3 (3)

x1 ≤ 3 (4)

x1 + 2x2 ≤ 9 (5)

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 3 / 44

§4.1 Linear Programming (Recall)

Linear programming
Linear programming is the optimization of a linear functional on a
polyhedron.

Given a matrix A ∈ Rm×n, a right-hand side vector b ∈ Rm and a cost
vector c ∈ Rn, the task

Minimize ctx subject to Ax ≤ b and x ∈ Rn

is called a linear program (LP).

Any point x with Ax ≤ b is called a feasible solution to the above LP.

Note that since

min{ctx | Ax ≤ b} = −max{−ctx | Ax ≤ b} = min{ctx | −Ax ≥ −b},

this formulation of linear programs covers maximization, ”≥”-inequalities,
and equalities as well.

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 4 / 44

§4.1 Linear Programming (Recall)

Feasibility and Duality
For a matrix A ∈ Rm×n and a right-hand side b ∈ Rm as before, the set
{x ∈ Rn | Ax ≤ b} is either

(1) empty → infeasible LP
e.g., {x ∈ Rn | x ≤ 0,−x ≤ −1}

(2) unbounded → for certain cost vectors c , inf{ctx | Ax ≤ b} = −∞
(3) non-empty & bounded → {x ∈ Rn | Ax ≤ b} is a non-empty polytope.

Theorem (Linear programming duality)

With A, b, c as before,

min{ctx | Ax ≤ b}
primal LP

= max{bty | Aty = c, y ≤ 0}
dual LP

if both LPs are feasible. In particular, if x is a feasible solution to the
primal LP and y is feasible for the dual LP, then ctx ≥ bty . Moreover, the
primal LP is infeasible if and only if the dual LP is unbounded.

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 5 / 44

§4.1 Linear Programming (Recall)

Vertices of polyhedra
Observe that a subset X ⊆ Rn is a single point if and only if X is the
intersection of n linearly independent affine hyperplanes.

A vertex of a polyhedron P = {x ∈ Rn | Ax ≤ b} is a point x ∈ P such
that there are n linearly independent rows ai1 , . . . , ain of A with aij x = bij ,
j = 1, . . . , n.

Theorem
Let P = {x ∈ Rn | Ax ≤ b} be a non-empty polytope. Then P has finitely
many vertices x1, . . . , xk , and P is the convex hull of its vertices, i.e.,

P =

{
k∑

i=1

λixi

∣∣∣∣∣ λ1 ≥ 0, . . . , λk ≥ 0, λ1 + · · ·+ λk = 1

}

A polytope can hence be described by finitely many affine halfspaces
(H-description) or by its finitely many vertices (V-description). In linear
programming, polytopes are always given by their H-description.

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 6 / 44

§4.1 Linear Programming (Recall)

Linear programming and vertices

Theorem
Let P = {x ∈ Rn | Ax ≤ b} be a non-empty polytope, and let c ∈ Rn.
Then there is a vertex x∗ of P such that

ctx∗ = min{ctx | x ∈ P}.

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 7 / 44

§4.1 Linear Programming (Recall)

Linear programming and vertices

Theorem
Let P = {x ∈ Rn | Ax ≤ b} be a non-empty polytope, and let c ∈ Rn.
Then there is a vertex x∗ of P such that

ctx∗ = min{ctx | x ∈ P}.

x1

x2

Minimize x1 + 3x2 s.t.

−x2 ≤ 0

−x1 − x2 ≤ −1

−x1 + x2 ≤ 3

x1 ≤ 3

x1 + 2x2 ≤ 9

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 7 / 44

§4.1 Linear Programming (Recall)

Linear programming and vertices

Theorem
Let P = {x ∈ Rn | Ax ≤ b} be a non-empty polytope, and let c ∈ Rn.
Then there is a vertex x∗ of P such that

ctx∗ = min{ctx | x ∈ P}.

x1

x2

c tx = 1

c
=

(1
, 3

)

Minimize x1 + 3x2 s.t.

−x2 ≤ 0

−x1 − x2 ≤ −1

−x1 + x2 ≤ 3

x1 ≤ 3

x1 + 2x2 ≤ 9

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 7 / 44

§4.1 Linear Programming (Recall)

Simplex algorithm

Basic primal simplex algorithm (Dantzig, 1947)

Input: A ∈ Rm×n, b ∈ Rm, c ∈ Rn s.t. P := {x | Ax ≤ b} is a polytope
Output: a vertex x∗ of P s.t. ctx∗ = min{ctx | x ∈ P} or ”infeasible”

(1) Find any vertex x ∈ P (→ (2)) or decide that P = ∅ (→ ”infeasible”).

(2) Let I be the set of indices of n linearly independent rows such that
AI x = bI . Let y be a solution to Aty = c with yi = 0 for i /∈ I .

(3) If y ≤ 0, then

ctx = (Aty)tx = y tAx = y tb ≤ max{bty | Aty = c , y ≤ 0}
duality

= min{ctx | Ax ≤ b},

so x is optimal → return x∗ := x .

(4) If y 6≤ 0, then find indices i ∈ I and j /∈ I such that AI ′ with
I ′ = I ∪ {j} \ {i} has full rank, and ctx ′ < ctx for the unique solution
x ′ to AI ′x

′ = bI ′ . Set x := x ′ → go to (2).

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 8 / 44

§4.1 Linear Programming (Recall)

Simplex algorithm: Remarks

I Intuitively, the simplex algorithm moves from a vertex of the
polytope to an adjacent vertex, strictly improving the objective value.

I Finding an initial vertex resp. detecting infeasibility can be done for an
LP of the form min{x | Ax ≤ b, x ≥ 0} with b ≥ 0 by considering first

min{1tz | Ax + z ≤ b, x ≥ 0, z ≥ 0},

using (0, b) as initial vertex. If the minimum value is 0, then the
simplex finds an initial vertex, otherwise the LP is infeasible. A similar
strategy works for arbitrary LPs.

I In step (4), there is no need to enumerate all adjacent vertices: There
are many clever pivoting rules concerning the selection of the next
vertex (e.g., Bland, Dantzig).

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 9 / 44

§4.1 Linear Programming (Recall)

Simplex algorithm: Complexity

I On rational polytopes, the worst-case running time of the simplex
algorithm is exponential for the most common pivot rules
(→ Klee-Minty cube).

I It is an open research question if there is a pivoting rule with
polynomial running time (→ polynomial Hirsch conjecture).

I There are polynomial-time algorithms for rational LPs on n variables
and b-bit input numbers:
I ellipsoid method (Khachiyan, 1979)
O(n6 · b): not of practical interest

I interior point/barrier method (Karmarkar, 1984)
O(n3.5 · b): can be fast on large LPs

I In practice, the (dual) simplex is the fastest method to solve LPs.

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 10 / 44

§4.1 Linear Programming (Recall)

Simple simplex example

x1

x2

(1)

(2)

(3
)

(4
)

(5)

c tx = 1

Minimize x1 + 3x2 s.t.

−x2 ≤ 0 (1)

−x1 − x2 ≤ −1 (2)

−x1 + x2 ≤ 3 (3)

x1 ≤ 3 (4)

x1 + 2x2 ≤ 9 (5)

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 11 / 44

§4.1 Linear Programming (Recall)

Simple simplex example

x1

x2

(1)

(2)

(3
)

(4
)

(5)

c tx = 1

Minimize x1 + 3x2 s.t.

−x2 ≤ 0 (1)

−x1 − x2 ≤ −1 (2)

−x1 + x2 ≤ 3 (3)

x1 ≤ 3 (4)

x1 + 2x2 ≤ 9 (5)

Initial vertex (1, 4):

Rows: −x1 + x2 = 3 and x1 + 2x2 = 9 →
(
−1 1
1 2

)(
1
4

)
=

(
3
9

)
Solve

(
−1 1
1 2

)
y =

(
1
3

)
→ y =

(
1/3
4/3

)
> 0 → not optimal.

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 11 / 44

§4.1 Linear Programming (Recall)

Simple simplex example

x1

x2

(1)

(2)

(3
)

(4
)

(5)

c tx = 1

Minimize x1 + 3x2 s.t.

−x2 ≤ 0 (1)

−x1 − x2 ≤ −1 (2)

−x1 + x2 ≤ 3 (3)

x1 ≤ 3 (4)

x1 + 2x2 ≤ 9 (5)

Vertex (−1, 2):

Rows: −x1 + x2 = 3 and −x1 − x2 ≤ −1 →
(
−1 1
−1 −1

)(
−1
2

)
=

(
3
−1

)
Solve

(
−1 −1
1 −1

)
y =

(
1
3

)
→ y =

(
1
−2

)
6≤ 0 → not optimal.

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 11 / 44

§4.1 Linear Programming (Recall)

Simple simplex example

x1

x2

(1)

(1)

(3
)

(4
)

(5)

c tx = 1

Minimize x1 + 3x2 s.t.

−x2 ≤ 0 (1)

−x1 − x2 ≤ −1 (2)

−x1 + x2 ≤ 3 (3)

x1 ≤ 3 (4)

x1 + 2x2 ≤ 9 (5)

Vertex (1, 0):

Rows: −x2 ≤ 0 and −x1 − x2 ≤ −1 →
(

0 −1
−1 −1

)(
1
0

)
=

(
0
−1

)
Solve

(
0 −1
−1 −1

)
y =

(
1
3

)
→ y =

(
−2
−1

)
≤ 0 → optimal!

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 11 / 44

Chapter 4

Linear and Integer Programming

§4.2 Integer Programming (Recall)

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 12 / 44

§4.2 Integer Programming (Recall)

Integer programming

Given a matrix A ∈ Rm×n, a right-hand side vector b ∈ Rm and a cost
vector c ∈ Rm, the task

Minimize ctx subject to Ax ≤ b and x ∈ Zn

is called an integer program (IP) or integer linear program (ILP).

If not all entries of x are required to be integer, one speaks of a mixed
integer program (MIP) or mixed integer linear program (MILP).

Each integer program has a natural LP relaxation by replacing x ∈ Zn

with x ∈ Rn.

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 13 / 44

§4.2 Integer Programming (Recall)

Feasibility and Duality

Again, IPs can be infeasible or unbounded. However, only weak duality is
known:

Theorem (Weak duality)

Let A, b, c as before. Then, if all programs are feasible,

min{ctx | Ax ≤ b, x ∈ Zn}
primal IP

≥ min{ctx | Ax ≤ b, x ∈ Rn}
primal LP relaxation

= max{bty | Aty = c, y ≤ 0, y ∈ Rn}
dual LP relaxation

≥ max{bty | Aty = c, y ≤ 0, y ∈ Zn}
”dual” IP

.

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 14 / 44

§4.2 Integer Programming (Recall)

IP example

x1

x2

(1)

(2)

(3
)

(4
)

(5)

c tx = 2

Minimize x1 + 3x2 s.t.

−2x2 ≤ −1 (1)

−x1 − x2 ≤ −1 (2)

−x1 + x2 ≤ 3 (3)

x1 ≤ 3 (4)

x1 + 2x2 ≤ 9 (5)

LP relaxation: optimal solution (0.5, 0.5) with objective value 2

Integer program: optimal solution (0, 1) with objective value 3

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 15 / 44

§4.2 Integer Programming (Recall)

IP example

x1

x2

c tx = 2

Minimize x1 + 3x2 s.t.

−2x2 ≤ −1 (1)

−x1 − x2 ≤ −1 (2)

−x1 + x2 ≤ 3 (3)

x1 ≤ 3 (4)

x1 + 2x2 ≤ 9 (5)

and x1, x2 ∈ Z!

LP relaxation: optimal solution (0.5, 0.5) with objective value 2

Integer program: optimal solution (0, 1) with objective value 3

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 15 / 44

§4.2 Integer Programming (Recall)

IP example

x1

x2

c tx = 2

c tx = 3

Minimize x1 + 3x2 s.t.

−2x2 ≤ −1 (1)

−x1 − x2 ≤ −1 (2)

−x1 + x2 ≤ 3 (3)

x1 ≤ 3 (4)

x1 + 2x2 ≤ 9 (5)

and x1, x2 ∈ Z!

LP relaxation: optimal solution (0.5, 0.5) with objective value 2
Integer program: optimal solution (0, 1) with objective value 3

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 15 / 44

§4.2 Integer Programming (Recall)

IP, polytopes, and NP-completeness

Lemma
Let P ⊆ Rn be a polytope and let Q be the convex hull of P ∩ Zn. Then

(1) Q is a polytope contained in P.

(2) P ∩ Zn is empty if and only if Q is empty.

(3) For any c ∈ Rn, min{ctx | x ∈ P ∩ Zn} = min{ctx | x ∈ Q}.

In particular, any integer program is a linear program. However, computing
an H-description of Q from an H-description of P is not doable in
polynomial-time unless P = NP:

Theorem (NP-completeness of integer programming, Karp 1972)

Given a rational polytope P, deciding if P ∩ Zn 6= ∅ is NP-complete.

Corollary

Any optimization problem (whose decision version is) in NP has a formulation
as integer program with polynomially many variables and constraints.

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 16 / 44

§4.2 Integer Programming (Recall)

Integrality gaps
Let P ⊆ Rn be a polytope and let c ∈ Rn be a cost vector. The quotient

min{ctx | x ∈ P ∩ Zn}
min{ctx | x ∈ P}

≥ 1

is called the integrality gap of the LP relaxation.

When the integrality gap is bounded by k for a set of polytopes, solving
the LP relaxation sometimes produces a k-factor approximation algorithm:

I shortest s-t-path in a directed graph: k = 1
(total unimodularity of the incidence matrix, Hoffman-Kruskal thm.)

I minimum vertex cover in a graph: k = 2
(LP relaxation has half-integral vertices)

I MaxSAT: k = 1− 1/e
(derandomization of randomized rounding)

Unfortunately, integrality gaps are often unbounded.

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 17 / 44

Chapter 4

Linear and Integer Programming

§4.3 Cutting Planes

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 18 / 44

§4.3 Cutting Planes

Solving IPs
There is no polynomial-time algorithm to solve integer programs unless
P = NP. What are good alternatives to enumeration of all integer points?
How can we exploit that linear programs are comparably easy to solve?

First approach: Cutting plane algorithms.

Definition
Let P be a polytope in Rn.

(1) A valid inequality for P is a linear inequality αtx ≤ β for some
α ∈ Rn and β ∈ R such that P ⊆ {x ∈ Rn | αtx ≤ β}.

(2) If x∗ /∈ P, a cutting plane or cut separating x∗ from P is a valid
inequality αtx ≤ β for P such that αtx∗ > β.

(3) Finding a cutting plane as in (2) is called the separation problem.

Note that ”cut” in the sense of ”cutting plane” is different to ”cut” in the
context of network flows.

Since P is convex and closed, cutting planes always exist.
Traffic Optimization: Optimal Tours in Graphs December 2, 2019 19 / 44

§4.3 Cutting Planes

Cutting plane algorithm

Basic cutting plane algorithm (Gomory, 1958)

Input: A ∈ Rm×n, b ∈ Rm, c ∈ Rn s.t. P := {x | Ax ≤ b} is a polytope
Output: a vertex x∗ of the convex hull Q of P ∩ Zn s.t.
ctx∗ = min{ctx | x ∈ P ∩ Zn} or ”infeasible”

(1) Solve the LP relaxation min{ctx | Ax ≤ b}. If infeasible, then return
”infeasible”, otherwise let x∗ be an optimal vertex.

(2) If x∗ is integral, return x∗.

(3) Find a cutting plane αtx ≤ β separating x∗ from Q and append it to
Ax ≤ b. Go to (1).

Lemma
If the basic cutting plane algorithm terminates, it is correct.

Proof.
Idea: If P ′ is any polytope considered in step (1), then Q ⊆ P ′ ⊆ P and
Q ∩ Zn = P ′ ∩ Zn = P ∩ Zn.
Traffic Optimization: Optimal Tours in Graphs December 2, 2019 20 / 44

§4.3 Cutting Planes

Simple cutting plane algorithm example

x1

x2

c tx = 2

Minimize x1 + 3x2 s.t.

−2x2 ≤ −1

−x1 − x2 ≤ −1

−x1 + x2 ≤ 3

x1 ≤ 3

x1 + 2x2 ≤ 9

x1, x2 ∈ Z

LP relaxation #1: x∗ = (0.5, 0.5), ctx∗ = 2

, cutting plane: x2 ≥ 0.75
LP relaxation #2: x∗ = (0.25, 0.75), ctx∗ = 2.5, cutting plane: x2 ≥ 1
LP relaxation #3: x∗ = (0, 1), ctx∗ = 3 → integral → optimal.

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 21 / 44

§4.3 Cutting Planes

Simple cutting plane algorithm example

x1

x2

c tx = 2

Minimize x1 + 3x2 s.t.

−2x2 ≤ −1

−x1 − x2 ≤ −1

−x1 + x2 ≤ 3

x1 ≤ 3

x1 + 2x2 ≤ 9

x1, x2 ∈ Z

LP relaxation #1: x∗ = (0.5, 0.5), ctx∗ = 2, cutting plane: x2 ≥ 0.75

LP relaxation #2: x∗ = (0.25, 0.75), ctx∗ = 2.5, cutting plane: x2 ≥ 1
LP relaxation #3: x∗ = (0, 1), ctx∗ = 3 → integral → optimal.

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 21 / 44

§4.3 Cutting Planes

Simple cutting plane algorithm example

x1

x2

c tx = 2.5

Minimize x1 + 3x2 s.t.

−2x2 ≤ −1

−x1 − x2 ≤ −1

−x1 + x2 ≤ 3

x1 ≤ 3

x1 + 2x2 ≤ 9

x1, x2 ∈ Z

LP relaxation #1: x∗ = (0.5, 0.5), ctx∗ = 2, cutting plane: x2 ≥ 0.75
LP relaxation #2: x∗ = (0.25, 0.75), ctx∗ = 2.5

, cutting plane: x2 ≥ 1
LP relaxation #3: x∗ = (0, 1), ctx∗ = 3 → integral → optimal.

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 21 / 44

§4.3 Cutting Planes

Simple cutting plane algorithm example

x1

x2

c tx = 2.5

Minimize x1 + 3x2 s.t.

−2x2 ≤ −1

−x1 − x2 ≤ −1

−x1 + x2 ≤ 3

x1 ≤ 3

x1 + 2x2 ≤ 9

x1, x2 ∈ Z

LP relaxation #1: x∗ = (0.5, 0.5), ctx∗ = 2, cutting plane: x2 ≥ 0.75
LP relaxation #2: x∗ = (0.25, 0.75), ctx∗ = 2.5, cutting plane: x2 ≥ 1

LP relaxation #3: x∗ = (0, 1), ctx∗ = 3 → integral → optimal.

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 21 / 44

§4.3 Cutting Planes

Simple cutting plane algorithm example

x1

x2

c tx = 3

Minimize x1 + 3x2 s.t.

−2x2 ≤ −1

−x1 − x2 ≤ −1

−x1 + x2 ≤ 3

x1 ≤ 3

x1 + 2x2 ≤ 9

x1, x2 ∈ Z

LP relaxation #1: x∗ = (0.5, 0.5), ctx∗ = 2, cutting plane: x2 ≥ 0.75
LP relaxation #2: x∗ = (0.25, 0.75), ctx∗ = 2.5, cutting plane: x2 ≥ 1
LP relaxation #3: x∗ = (0, 1), ctx∗ = 3 → integral → optimal.

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 21 / 44

§4.3 Cutting Planes

Termination: Gomory-Chvátal truncations

Definition
For a rational polyhedron P = {x ∈ Rn | Ax ≤ b}, define its
Gomory-Chvátal truncation P ′ as

P ′ := {x ∈ Rn | y tAx ≤ by tbc for all y ≥ 0 with y tA integral}.

Lemma
P ∩ Zn ⊆ P ′ ⊆ P.

Theorem (Gomory, Giles, Pulleyblank, Schrijver)

The Gomory-Chvátal truncation of a rational polyhedron P is a polyhedron
whose H-description can be determined in exponential time from an
H-description of P (e.g., by Gomory cuts).

Theorem (Chvátal, 1973, Schrijver, 1980)

For any rational polyhedron, there is an r ∈ N0 (Chvátal rank) s.t. the
convex hull of P ∩ Zn equals the r -th Gomory-Chvátal truncation P ′′···′︸︷︷︸

r

.

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 22 / 44

§4.3 Cutting Planes

Termination and Remarks
Corollary

For every rational polytope P, cutting planes can be chosen in such a way
that the cutting plane algorithm terminates after a finite number of steps.

Remarks
I It is often much more reasonable to use other problem-specific cuts

than the generic Gomory cuts.

I The best cutting planes are facet-defining inequalities, i.e., the
inequalities defining the inclusion-maximal faces of conv(P ∩ Zn).

I Today, pure cutting plane approaches are rarely used to solve IPs, due
to running time and numerical issues.

I Each intermediate LP value ctx∗ is a lower bound on the minimum
value of the IP, and this lower bound does not decrease during the
course of the algorithm.

I It is advantageous to use the dual simplex, because adding an extra
primal constraint (dual variable) preserves dual feasibility (warmstart).

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 23 / 44

§4.3 Cutting Planes

Separation vs. Optimization

Theorem (Grötschel, Lovasz, Schrijver, 1981, 1988)

Let P ∈ Rn be a well-described rational polyhedron. Then the following
problems are polynomially equivalent:

(1) The optimization problem
”Given c ∈ Qn, find x∗ ∈ P s.t. ctx∗ = min{ctx | x ∈ P}.”

(2) The separation problem
”Given x∗ ∈ Qn, decide if x∗ ∈ P or find α ∈ Qn s.t. αtx < αtx∗ for
all x ∈ P.”

This means that there is a polynomial-time optimization algorithm if and
only if there is a polynomial-time algorithm for cutting planes. In
particular, unless P = NP, there is no polynomial-time algorithm solving
the separation problem for the convex hull of the integer points of an
arbitrary polytope.

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 24 / 44

§4.3 Cutting Planes

Back to TSP
Cutting planes were first developed in the context of TSP by Dantzig,
Fulkerson and Johnson (1954).

Question: How can TSP be formulated as an integer program?

Let (Kn, c) be a TSP instance. Encode a Hamiltonian circuit C as follows:
Introduce a binary variable xe ∈ {0, 1} for each edge e ∈ E (Kn) with the
interpretation that

xe =

{
1 iff e ∈ E (C),

0 iff e /∈ E (C).

I.e., x ∈ {0, 1}E(Kn) is the incidence vector of C .
Clearly, each vertex has to be incident to exactly two edges of C :∑

e∈δ(v)

xe = 2, v ∈ V (Kn),

where δ(v) is the set of edges incident to v .

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 25 / 44

§4.3 Cutting Planes

TSP IP formulation – first idea

Minimize
∑

e∈E(Kn)

cexe

s.t.
∑

e∈δ(v)

xe = 2, v ∈ V (Kn),

xe ∈ {0, 1}, e ∈ E (Kn).

Problem
Not every feasible solution to the IP is an incidence vector of a
Hamiltonian circuit – there might be subtours.

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 26 / 44

§4.3 Cutting Planes

Subtour elimination constraints
How can subtours be excluded from the IP?

Lemma
A vector x ∈ {0, 1}E(Kn) is an incidence vector of a Hamiltonian circuit in
Kn if and only if∑

e∈δ(v)

xe = 2, v ∈ V (Kn), (1)

∑
e∈E(Kn[X])

xe ≤ |X | − 1, ∅ (X (V (Kn), (2)

where E (Kn[X]) := {{v ,w} ∈ E (Kn) | v ∈ X ,w ∈ X}.

Proof.
Let x be a feasible solution to the IP. By (1), x is the incidence vector of a
union of vertex-disjoint circuits covering all vertices of Kn. If X is the
vertex set of such a circuit C , then C has |X | edges. But by (2), the circuit
has less than |X | − 1 edges unless X = V (Kn), i.e., C is Hamiltonian.
Traffic Optimization: Optimal Tours in Graphs December 2, 2019 27 / 44

§4.3 Cutting Planes

Subtour elimination constraints

Proof (cont.)

Conversely, let x be an incidence vector of a Hamiltonian circuit C . Then
(1) is clearly satisfied. Let X be a proper subset of V (Kn). Then the
restriction of C to the subgraph (X ,E (Kn[X])) is a union of vertex-disjoint
paths, and hence has at most |X | − 1 edges, so (2) is fulfilled.

Remarks

I We obtain an IP formulation for TSP with n(n − 1)/2 binary variables
and n + 2n − 2 constraints.

I In fact, since every circuit in a subtour has ≥ 3 vertices, it suffices to
consider X ⊆ V (Kn) with 3 ≤ |X | ≤ n − 3.

I For large n, it is hard to write down all constraints explicitly.

I Idea: Integrate the subtour elimination constraints into the cutting
plane approach!

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 28 / 44

§4.3 Cutting Planes

TSP IP formulation – working

The following is a valid IP formulation for the TSP:

(TSP-SEC) Minimize
∑

e∈E(Kn)

cexe

s.t.
∑

e∈δ(v)

xe = 2, v ∈ V (Kn),

∑
e∈E(Kn[X])

xe ≤ |X | − 1, ∅ (X (V (Kn),

xe ∈ {0, 1}, e ∈ E (Kn).

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 29 / 44

§4.3 Cutting Planes

TSP cutting plane algorithm

TSP subtour cutting plane algorithm

Input: TSP instance (Kn, c)
Output: Incidence vector x∗ of a minimum cost Hamiltonian circuit

(1) Let P = {x ∈ [0, 1]E(Kn) |
∑

e∈δ(v) xe = 2} be the LP relaxation of
(TSP-SEC) without subtour elimination constraints.

(2) Let x∗ be the optimal solution to min{ctx | x ∈ P}.
(3) Find a proper subset X of V (Kn) such that the subtour inequality for

X and x∗ is violated, and add this inequality to P. If such an X was
found, go to (2).

(4) If x∗ is integral, return x∗.

(5) Find a Gomory cut separating x∗ from the convex hull of P ∩ Zn. Add
this cut to P, and go to (2).

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 30 / 44

§4.3 Cutting Planes

Integrality of the subtour polytope

Unfortunately, the LP relaxation of (TSP-SEC) contains non-integral
points. I.e., one might have to add Gomory cuts in the end in order to
achieve integrality:

2
2

1

2

1

1

2
2

2

All missing edges have very large cost.

An optimal TSP tour has cost 10.
An optimal fractional TSP tour (dashed: xe = 0.5) has cost 9

satisfying all subtour constraints.

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 31 / 44

§4.3 Cutting Planes

Integrality of the subtour polytope

Unfortunately, the LP relaxation of (TSP-SEC) contains non-integral
points. I.e., one might have to add Gomory cuts in the end in order to
achieve integrality:

2
2

1

2

1

1

2
2

2

All missing edges have very large cost.

An optimal TSP tour has cost 10.

An optimal fractional TSP tour (dashed: xe = 0.5) has cost 9
satisfying all subtour constraints.

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 31 / 44

§4.3 Cutting Planes

Integrality of the subtour polytope

Unfortunately, the LP relaxation of (TSP-SEC) contains non-integral
points. I.e., one might have to add Gomory cuts in the end in order to
achieve integrality:

2
2

1

2

1

1

2
2

2

All missing edges have very large cost.

An optimal TSP tour has cost 10.
An optimal fractional TSP tour (dashed: xe = 0.5) has cost 9

satisfying all subtour constraints.

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 31 / 44

§4.3 Cutting Planes

Separation of subtour inequalities
However, there are also good news:

Lemma
Given a rational point x ∈ [0, 1]E(Kn) with

∑
e∈δ(v) xe = 2 for all v ∈ Kn,

there is a polynomial-time algorithm that computes a proper subset X of
V (Kn) such that the subtour inequality for X and x is violated, or decides
that no such X exists.

Proof.
Let x be as in the lemma. Let X be a proper subset of V (Kn) and let δ(X)
be the set of edges connecting X with V (Kn) \ X . Then∑

e∈δ(X)

xe + 2
∑

e∈E(Kn[X])

xe =
∑
v∈X

∑
e∈δ(v)

xe = 2|X |,

so the subtour inequality is equivalent to∑
e∈δ(X)

xe ≥ 2.

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 32 / 44

§4.3 Cutting Planes

Separation of subtour inequalities

Proof (cont.)

Hence the subtour inequality is violated for some X if and only if the
minimum cut w.r.t. x has capacity less than 2. Finding a minimum cut
can be done in polynomial time (→ Optimization I).

Remarks

I The subtour inequalities are facet-defining (Grötschel, Padberg, 1979)
and can be separated efficiently → probably a good source for cuts.

I Because of the separation-optimization equivalence, optimization over
the subtour polytope – i.e., the polytope described by the LP
relaxation of (TSP-SEC) – can hence be done in polynomial time,
although it has exponentially many constraints.

I Note that if x is integral – i.e., the incidence vector of a union of
vertex-disjoint circuits – then a violated subtour elimination constraint
can be detected by a simple traversal of one of the circuits.

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 33 / 44

§4.3 Cutting Planes

Odysseus’ cutting planes

1

16

Remember: Odysseus wants to travel from Troy (1) to Ithaca (16) on a
Hamiltonian path of minimum length visiting all 16 places exactly once.
This problem can be transformed to a standard TSP (Problem Set 6).

Let’s solve this TSP with a subtour elimination cutting plane approach.
Traffic Optimization: Optimal Tours in Graphs December 2, 2019 34 / 44

§4.3 Cutting Planes

Odysseus’ cutting planes

1

16

LP #1: 0 subtour constraints, 0 fractional variables, length = 5850

add subtour constraint for X = {4, 5, 6, 9, 10, 11, 14}:
x4,5 + x4,6 + x4,9 + x4,10 + x4,11 + x4,14 + x5,6 + x5,9 + x5,10 + x5,11 + x5,14

+ x6,9 + x6,10 + x6,11 + x6,14 + x9,10 + x9,11 + x9,14 + x10,11 + x10,14 + x11,14 ≤ 6

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 34 / 44

§4.3 Cutting Planes

Odysseus’ cutting planes

1

16

LP #1: 0 subtour constraints, 0 fractional variables, length = 5850

add subtour constraint for X = {4, 5, 6, 9, 10, 11, 14}:
x4,5 + x4,6 + x4,9 + x4,10 + x4,11 + x4,14 + x5,6 + x5,9 + x5,10 + x5,11 + x5,14

+ x6,9 + x6,10 + x6,11 + x6,14 + x9,10 + x9,11 + x9,14 + x10,11 + x10,14 + x11,14 ≤ 6

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 34 / 44

§4.3 Cutting Planes

Odysseus’ cutting planes

1

16

LP #2: 1 subtour constraint, 0 fractional variables, length = 5942

add subtour constraint for X = {1, 2, 3, 8, 15, 16}

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 34 / 44

§4.3 Cutting Planes

Odysseus’ cutting planes

11

1616

LP #2: 1 subtour constraint, 0 fractional variables, length = 5942
add subtour constraint for X = {1, 2, 3, 8, 15, 16}

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 34 / 44

§4.3 Cutting Planes

Odysseus’ cutting planes

1

16

LP #3: 2 subtour constraints, 8 fractional variables, length = 6379.5

add subtour constraint for X = {1, 2, 3, 8, 16}

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 34 / 44

§4.3 Cutting Planes

Odysseus’ cutting planes

11

1616

LP #3: 2 subtour constraints, 8 fractional variables, length = 6379.5
add subtour constraint for X = {1, 2, 3, 8, 16}

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 34 / 44

§4.3 Cutting Planes

Odysseus’ cutting planes

1

16

LP #4: 3 subtour constraints, 0 fractional variables, length = 6507

no violated subtour constraint
optimal solution found!

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 34 / 44

§4.3 Cutting Planes

Odysseus’ cutting planes

1

16

LP #4: 3 subtour constraints, 0 fractional variables, length = 6507
no violated subtour constraint

optimal solution found!

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 34 / 44

§4.3 Cutting Planes

Odysseus’ cutting planes

Remarks

I Odysseus’ problem could be solved in only 4 iterations of the TSP
subtour cutting plane algorithm: We solved 4 linear programs and
added in total 3 subtour elimination constraints.

I A full formulation of (TSP-SEC) for Odysseus’ TSP instance would
have required 217 − 2 = 131 070 subtour elimination constraints.

I ZIB’s LP solver SoPlex (soplex.zib.de) solves each LP in less than
10 ms.

I We achieved integrality without adding further non-subtour cuts.

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 35 / 44

soplex.zib.de

Chapter 4

Linear and Integer Programming

§4.4 Branch-and-Bound

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 36 / 44

§4.4 Branch-and-Bound

Branch-and-Bound

Branch-and-Bound (Land, Doig, 1960) is a method that applies to
various combinatorial optimization problems, and in particular to integer
programming. It is an alternative to cutting plane methods, avoiding the
generation of cuts by enumeration of feasible solutions. It comprises two
main subroutines:

Branch: Given a subset of feasible solutions, find a partition into at least
two non-empty subsets.

Bound: Given a subset of feasible solutions, compute a lower bound (for
minimization problems) on the objective value of any element.

The running time of a branch-and-bound algorithm depends on the precise
realization of these two subroutines.

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 37 / 44

§4.4 Branch-and-Bound

Branch-and-Bound
Basic branch-and-bound algorithm

Input: a minimization problem instance with cost function c and
(an implicitly given) non-empty finite set X of feasible solutions
Output: x∗ ∈ X s.t. c(x∗) = min{c(x) | x ∈ X}
(1) Let T be a tree with precisely one vertex X . Mark X as active. Set

U :=∞.

(2) If there is no active vertex of T , return x∗.

(3) Node Selection: Let X be an active vertex of T , mark X non-active.

(4) Branch: Find a partition X = X1
.
∪ . . .

.
∪ Xk .

(5) Bound: For each i = 1, . . . , k:
Find a lower bound LXi

on any solution in Xi .
If Xi = {x} and LXi

< U: Set U := c(x) and x∗ := x .
If |Xi | > 1 and LXi

< U, add the vertex Xi and an edge {X ,Xi} to
T and mark Xi as active.

Go to (2).
Traffic Optimization: Optimal Tours in Graphs December 2, 2019 38 / 44

§4.4 Branch-and-Bound

Remarks

I During the course of the algorithm, U is always an upper bound on
the optimal value. The algorithm prunes subsets Xi ⊆ X for which

min{c(x) | x ∈ Xi} ≥ LXi
≥ U ≥ c(x∗) ≥ min{c(x) | x ∈ X},

and all other feasible solution are enumerated.
I The number of iterations is at most the number of vertices in the tree

T . The vertices of T are distinct subsets of X , so that the algorithm
terminates within O(2|X |) steps.

I In the worst case – when the bounds LXi
are weak – all elements of X

get enumerated.
I Calling heuristics can improve the bound U.
I The better the bounds LXi

and U, the smaller the tree, the faster the
algorithm.

I In the context of TSP, branch-and-bound has been applied first by
Little et al., 1963, and they in fact invented the name.

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 39 / 44

§4.4 Branch-and-Bound

Branch-and-bound for 0-1-IPs

0-1-IP branch-and-bound algorithm

Input: an IP of the form min{ctx | Ax ≤ b, x ∈ {0, 1}n} over a polytope
Output: an optimal solution x∗ or ”infeasible”

(1) Let T be a tree with precisely one vertex labeled with ∅. Mark the
vertex as active. Set U :=∞ and x∗ :=”infeasible”.

(2) If there is no active vertex of T , return x∗.

(3) Node Selection: Let X be an active vertex of T , mark X non-active.

(4) Bound: Let x be an optimal solution to the LP relaxation with the
additional constraints X (go to (2) if infeasible). Set LX := c(x).
If x is not integral, |X | < n and LX < U: Go to (5).
If x is integral and LX < U: Set U := c(x) and x∗ := x .
Go to (2).

(5) Branch: Select a variable xi not listed in X , and connect X to two
new active tree vertices X ∪ {xi = 0} and X ∪ {xi = 1}. Go to (3).

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 40 / 44

§4.4 Branch-and-Bound

Branch-and-bound for 0-1-IPs
I This is a specialization of the basic branch-and-bound algorithm to

integer programming with binary variables. LP relaxations are natural
candidates for lower bounds.

I It is reasonable to solve the LP at the root node ∅ as well.
I When an LP solution is integral, it is not reasonable to branch further,

because the objective value cannot decrease in deeper tree levels, as
more and more constraints are added.

I When all n variables appear in X , all variables are fixed, so that the
LP is trivial to solve.

I Again, heuristics can improve U, so that more tree nodes are pruned.
I As a branching rule, one typically selects variables with relaxation

values close to 0.5.
I At any time, there is a global lower bound L, and hence there is

information on the quality of the current solution by means of the
optimality gap defined as (U − L)/U ≥ 0 in the case U > 0.

I One may stop if the optimality gap is below a certain threshold.
Traffic Optimization: Optimal Tours in Graphs December 2, 2019 41 / 44

§4.4 Branch-and-Bound

TSP branch-and-bound example

1

2

3 4

5

6

c 1 2 3 4 5 6

1 0 3 1 3 2 2
2 3 0 1 1 1 3
3 1 1 0 1 4 4
4 3 1 1 0 3 1
5 2 1 4 3 0 1
6 2 3 4 1 1 0

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 42 / 44

§4.4 Branch-and-Bound

TSP branch-and-bound example

1

2

3 4

5

6

c 1 2 3 4 5 6

1 0 3 1 3 2 2
2 3 0 1 1 1 3
3 1 1 0 1 4 4
4 3 1 1 0 3 1
5 2 1 4 3 0 1
6 2 3 4 1 1 0

L = −∞U =∞

root

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 42 / 44

§4.4 Branch-and-Bound

TSP branch-and-bound example
1

2

3 4

5

6

c 1 2 3 4 5 6

1 0 3 1 3 2 2
2 3 0 1 1 1 3
3 1 1 0 1 4 4
4 3 1 1 0 3 1
5 2 1 4 3 0 1
6 2 3 4 1 1 0

L = 7U =∞

root
LX = 7

LP solution at X = ∅ (root):

x1,3 = 1 x2,5 = 1

x1,5 = 0.5 x3,4 = 0.5

x1,6 = 0.5 x4,6 = 1

x2,3 = 0.5 x5,6 = 0.5

x2,4 = 0.5

fractional, objective value: 7

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 42 / 44

§4.4 Branch-and-Bound

TSP branch-and-bound example

1

2

3 4

5

6

c 1 2 3 4 5 6

1 0 3 1 3 2 2
2 3 0 1 1 1 3
3 1 1 0 1 4 4
4 3 1 1 0 3 1
5 2 1 4 3 0 1
6 2 3 4 1 1 0

L = 7U =∞

root
LX = 7

x1,2 = 0 x1,2 = 1

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 42 / 44

§4.4 Branch-and-Bound

TSP branch-and-bound example

1

2

3 4

5

6

c 1 2 3 4 5 6

1 0 3 1 3 2 2
2 3 0 1 1 1 3
3 1 1 0 1 4 4
4 3 1 1 0 3 1
5 2 1 4 3 0 1
6 2 3 4 1 1 0

L = 7U =∞

root
LX = 7

x1,2 = 0 x1,2 = 1

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 42 / 44

§4.4 Branch-and-Bound

TSP branch-and-bound example
1

2

3 4

5

6

c 1 2 3 4 5 6

1 0 3 1 3 2 2
2 3 0 1 1 1 3
3 1 1 0 1 4 4
4 3 1 1 0 3 1
5 2 1 4 3 0 1
6 2 3 4 1 1 0

L = 7U =∞

root
LX = 7

x1,2 = 0
LX = 7

x1,2 = 1

LP solution at X = {x1,2 = 0}:

x1,3 = 1 x2,5 = 1

x1,5 = 0.5 x3,4 = 0.5

x1,6 = 0.5 x4,6 = 1

x2,3 = 0.5 x5,6 = 0.5

x2,4 = 0.5

fractional, objective value: 7

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 42 / 44

§4.4 Branch-and-Bound

TSP branch-and-bound example
1

2

3 4

5

6

c 1 2 3 4 5 6

1 0 3 1 3 2 2
2 3 0 1 1 1 3
3 1 1 0 1 4 4
4 3 1 1 0 3 1
5 2 1 4 3 0 1
6 2 3 4 1 1 0

L = 7U =∞

root
LX = 7

x1,2 = 0
LX = 7

x1,2 = 1

x1,3 = 0 x1,3 = 1

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 42 / 44

§4.4 Branch-and-Bound

TSP branch-and-bound example
1

2

3 4

5

6

c 1 2 3 4 5 6

1 0 3 1 3 2 2
2 3 0 1 1 1 3
3 1 1 0 1 4 4
4 3 1 1 0 3 1
5 2 1 4 3 0 1
6 2 3 4 1 1 0

L = 7U =∞

root
LX = 7

x1,2 = 0
LX = 7

x1,2 = 1

x1,3 = 0 x1,3 = 1

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 42 / 44

§4.4 Branch-and-Bound

TSP branch-and-bound example
1

2

3 4

5

6

c 1 2 3 4 5 6

1 0 3 1 3 2 2
2 3 0 1 1 1 3
3 1 1 0 1 4 4
4 3 1 1 0 3 1
5 2 1 4 3 0 1
6 2 3 4 1 1 0

L = 7U = 8

root
LX = 7

x1,2 = 0
LX = 7

x1,2 = 1
LX = 8

x1,3 = 0 x1,3 = 1

LP solution at X = {x1,2 = 1}:

x1,2 = 1 x3,4 = 1

x1,3 = 1 x4,6 = 1

x2,5 = 1 x5,6 = 1

integral, objective value: 8

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 42 / 44

§4.4 Branch-and-Bound

TSP branch-and-bound example
1

2

3 4

5

6

c 1 2 3 4 5 6

1 0 3 1 3 2 2
2 3 0 1 1 1 3
3 1 1 0 1 4 4
4 3 1 1 0 3 1
5 2 1 4 3 0 1
6 2 3 4 1 1 0

L = 7U = 8

root
LX = 7

x1,2 = 0
LX = 7

x1,2 = 1
LX = 8

x1,3 = 0 x1,3 = 1

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 42 / 44

§4.4 Branch-and-Bound

TSP branch-and-bound example
1

2

3 4

5

6

c 1 2 3 4 5 6

1 0 3 1 3 2 2
2 3 0 1 1 1 3
3 1 1 0 1 4 4
4 3 1 1 0 3 1
5 2 1 4 3 0 1
6 2 3 4 1 1 0

L = 7U = 8

root
LX = 7

x1,2 = 0
LX = 7

x1,2 = 1
LX = 8

x1,3 = 0
LX = 8

x1,3 = 1

LP solution at X = {x1,2 = 1, x1,3 = 0}:

x1,5 = 1 x2,5 = 1

x1,6 = 1 x3,4 = 1

x2,3 = 1 x4,6 = 1

integral, objective value: 8

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 42 / 44

§4.4 Branch-and-Bound

TSP branch-and-bound example
1

2

3 4

5

6

c 1 2 3 4 5 6

1 0 3 1 3 2 2
2 3 0 1 1 1 3
3 1 1 0 1 4 4
4 3 1 1 0 3 1
5 2 1 4 3 0 1
6 2 3 4 1 1 0

L = 7U = 8

root
LX = 7

x1,2 = 0
LX = 7

x1,2 = 1
LX = 8

x1,3 = 0
LX = 8

x1,3 = 1

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 42 / 44

§4.4 Branch-and-Bound

TSP branch-and-bound example
1

2

3 4

5

6

c 1 2 3 4 5 6

1 0 3 1 3 2 2
2 3 0 1 1 1 3
3 1 1 0 1 4 4
4 3 1 1 0 3 1
5 2 1 4 3 0 1
6 2 3 4 1 1 0

L = 7U = 7

root
LX = 7

x1,2 = 0
LX = 7

x1,2 = 1
LX = 8

x1,3 = 0
LX = 8

x1,3 = 1
LX = 7

LP solution at X = {x1,2 = 1, x1,3 = 1}:

x1,3 = 1 x2,5 = 1

x1,6 = 1 x3,4 = 1

x2,4 = 1 x5,6 = 1

integral, objective value: 7

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 42 / 44

§4.4 Branch-and-Bound

Branch-and-cut
Cutting planes and branch-and-bound can be combined to
branch-and-cut:

At every node of the branch-and-bound tree, look for cutting planes that
are easy to find, e.g., subtour inequalities for TSP. Solve the LP relaxation
again until no more cutting planes are found, the solution is integral or
some iteration limit is reached. Then start branching.

It is also possible to add local cuts, i.e., cutting planes that are only valid
for the subproblem at the current b&b tree node.

Branch-and-cut produces very small branch-and-bound trees and is the
method of choice for hard IPs. It is also used by the TSP solver concorde,
which holds the world record for the largest TSP instance (85 900 vertices)
solved to proven optimality.

If you want to try out branch-and-cut software, have a look at SCIP, the
open-source branch-and-cut framework developed at ZIB (scip.zib.de).
Traffic Optimization: Optimal Tours in Graphs December 2, 2019 43 / 44

 scip.zib.de

Traffic Optimization:

Optimal Tours in Graphs

Niels Lindner

Lecture 8
December 2, 2019

Traffic Optimization: Optimal Tours in Graphs December 2, 2019 44 / 44

	Linear and Integer Programming
	Linear Programming (Recall)
	Integer Programming (Recall)
	Cutting Planes
	Branch-and-Bound

