Problem Set $1 \mathbf{u}$

due: January 6, 2020

Exercise 1

Consider the following two sets of points in \mathbb{R}^{2} :

$$
\begin{aligned}
& \hat{A}:=\{(4,6),(6,18),(12,6),(12,28),(15,40),(16,0),(16,43),(17,38),(19,38),(20,0),(20,43), \\
&(21,40),(24,6),(24,28),(30,18),(32,6)\}, \\
& \widehat{B}:=\{ (0,8),(2,16),(8,8),(8,26),(11,36),(11,44),(16,8),(18,0),(18,48),(20,8),(25,36), \\
&(25,44),(28,8),(28,26),(34,16),(36,8)\} .
\end{aligned}
$$

Find an optimal TSP tour such that

- all points in $\hat{A} \cup \hat{B}$ are visited exactly once,
- the tour alternates between points in \hat{A} and \hat{B}, i.e., the two tour neighbors of any point in \hat{A} belong to \hat{B} and vice versa,
- the total Euclidean distance is minimum.

Please document your solution strategy. You may use any tool to solve the TSP instance to optimality, including concorde on the NEOS server (https://neos-server.org).

Finally, draw your optimal TSP tour in \mathbb{R}^{2}.

Have a nice Christmas!

