Problem Set 12

due: January 20, 2020

Exercise 1

10 points
Consider the following event-activity network $\mathcal{N}=(V, E)$ with period time $T=20$, periodic timetable $\pi \in[0,20)^{V}$ and activity durations $x \in \mathbb{R}_{\geq 0}^{E}$:

The set E decomposes into driving activities E_{d} (bold and colored), and turnaround activities E_{t} (dashed). The turnaround activities at a stop (gray box) with n arrival events and n departure events form a complete bipartite graph $K_{n, n}$ with n^{2} edges. For each turnaround activity $i j \in E$ holds $x_{i j}=\left[\pi_{j}-\pi_{i}-4\right]_{20}+4 \in[4,24)$. Recall that each activity $i j \in E$ carries a periodic offset $p_{i j}:=\left(x_{i j}-\pi_{j}+\pi_{i}\right) / T$.

Solve the periodic vehicle scheduling problem on \mathcal{N} :
(a) Compute a minimum-weight perfect matching (w.r.t. x or p) of the subgraph $\left(V, E_{t}\right)$.
(b) Deduce from (a) a minimum cost circulation (w.r.t. x or p) covering each driving activity exactly once.
(c) How many vehicles does an optimal periodic vehicle schedule require?
(d) Find the number of distinct periodic vehicle schedules in \mathcal{N}.

Exercise 2

Let $\mathcal{N}=(V, E)$ be an event-activity network. Suppose that
(1) $V=V_{\text {arr }} \dot{\cup} V_{\text {dep }}$ and $\# V_{\text {arr }}=\# V_{\text {dep }}$,
(2) $E=E_{d} \dot{\cup} E_{t}, E_{d} \subseteq V_{\text {dep }} \times V_{\text {arr }}$ and $E_{t} \subseteq V_{\text {arr }} \times V_{\text {dep }}$,
(3) $\# \delta^{-}(v)=1$ for all $v \in V_{\text {arr }}$ and $\# \delta^{+}(v)=1$ for all $v \in V_{\text {dep }}$.

Define a circulation in \mathcal{N} as a (vertex-)disjoint union of directed circuits in \mathcal{N}. Prove that
$\left\{\right.$ circulations in (V, E) containing each $\left.e \in E_{d}\right\} \rightarrow\left\{\right.$ perfect matchings in $\left.\left(V, E_{t}\right)\right\}$

$$
\left(\gamma_{e}\right)_{e \in E} \mapsto\left(\gamma_{e}\right)_{e \in E_{t}}
$$

is a bijective map.

Exercise 3

Let $\mathcal{N}=(V, E)$ be an event-activity network. For a period time $T \in \mathbb{N}$, let $\pi \in[0, T)^{V}$ be a periodic timetable with activity durations $x \in \mathbb{R}^{E}$ such that $\pi_{w}-\pi_{v} \equiv x_{v w} \bmod T$ holds for all $v w \in E$. Suppose that $\gamma \in \mathbb{R}^{E}$ satisfies $\sum_{e \in \delta^{-}(v)} \gamma_{e}=\sum_{e \in \delta^{+}(v)} \gamma_{e}$ at every event $v \in V$. Show that $\gamma^{t} x \equiv 0 \bmod T$.

