Problem Set 12

due: January 20, 2020

Exercise 1

10 points

Consider the following event-activity network $\mathcal{N} = (V, E)$ with period time T = 20, periodic timetable $\pi \in [0, 20)^V$ and activity durations $x \in \mathbb{R}^E_{\geq 0}$:

The set *E* decomposes into driving activities E_d (bold and colored), and turnaround activities E_t (dashed). The turnaround activities at a stop (gray box) with *n* arrival events and *n* departure events form a complete bipartite graph $K_{n,n}$ with n^2 edges. For each turnaround activity $ij \in E$ holds $x_{ij} = [\pi_j - \pi_i - 4]_{20} + 4 \in [4, 24)$. Recall that each activity $ij \in E$ carries a *periodic offset* $p_{ij} := (x_{ij} - \pi_j + \pi_i)/T$.

Solve the periodic vehicle scheduling problem on \mathcal{N} :

- (a) Compute a minimum-weight perfect matching (w.r.t. x or p) of the subgraph (V, E_t) .
- (b) Deduce from (a) a minimum cost circulation (w.r.t. x or p) covering each driving activity exactly once.
- (c) How many vehicles does an optimal periodic vehicle schedule require?
- (d) Find the number of distinct periodic vehicle schedules in \mathcal{N} .

Exercise 2

Let $\mathcal{N} = (V, E)$ be an event-activity network. Suppose that

(1) $V = V_{\text{arr}} \cup V_{\text{dep}}$ and $\#V_{\text{arr}} = \#V_{\text{dep}}$,

5 points

- (2) $E = E_d \cup E_t, E_d \subseteq V_{dep} \times V_{arr} \text{ and } E_t \subseteq V_{arr} \times V_{dep},$
- (3) $\#\delta^{-}(v) = 1$ for all $v \in V_{arr}$ and $\#\delta^{+}(v) = 1$ for all $v \in V_{dep}$.

Define a *circulation* in \mathcal{N} as a (vertex-)disjoint union of directed circuits in \mathcal{N} . Prove that

{circulations in (V, E) containing each $e \in E_d$ } \rightarrow {perfect matchings in (V, E_t) } $(\gamma_e)_{e \in E} \mapsto (\gamma_e)_{e \in E_t}$

is a bijective map.

Exercise 3

5 points

Let $\mathcal{N} = (V, E)$ be an event-activity network. For a period time $T \in \mathbb{N}$, let $\pi \in [0, T)^V$ be a periodic timetable with activity durations $x \in \mathbb{R}^E$ such that $\pi_w - \pi_v \equiv x_{vw} \mod T$ holds for all $vw \in E$. Suppose that $\gamma \in \mathbb{R}^E$ satisfies $\sum_{e \in \delta^-(v)} \gamma_e = \sum_{e \in \delta^+(v)} \gamma_e$ at every event $v \in V$. Show that $\gamma^t x \equiv 0 \mod T$.