Problem Set 13

due: January 27, 2020

Exercise 1

Find an example of a periodic vehicle scheduling instance (\mathcal{N}, T, π, x) and an optimal periodic vehicle schedule S_p such that for some optimal aperiodic vehicle schedule $S_{a,n}$ for (\mathcal{T}_n, \preceq) as defined in the lecture holds $\nu(S_{a,n}) < \nu(S_p)$.

Exercise 2

The *Returning ATSP* is the following: Given a complete digraph K_n^* on n vertices with cost function $c \in \mathbb{R}^{E}_{\geq 0}$ and a distinguished vertex $v \in V(K_n^*)$, find a closed walk C in K_n^* satisfying all of the following properties:

- 1. C is of minimum cost w.r.t. c,
- 2. C visits each vertex in $V(K_n^*) \setminus \{v\}$ exactly once,
- 3. C visits v at least once.
- (a) Prove that *Returning ATSP* is NP-complete.
- (b) Construct a polynomial-time reduction from the single-depot aperiodic vehicle scheduling problem to Returning ATSP.
- (c) Let $\pi: V(K_n^*) \to \mathbb{R}_{\geq 0}$ be a map with $\pi(v) = 0$. Suppose that

$$c_{ij} = \begin{cases} \pi(j) - \pi(i) & \text{if } \pi(j) > \pi(i) \text{ and } j \neq v, \\ \infty & \text{if } \pi(j) \le \pi(i) \text{ and } j \neq v, \\ 0 & \text{if } j = v, \end{cases} \text{ holds for all } ij \in E(K_n^*).$$

Subject to these restrictions, give a polynomial-time algorithm for *Returning ATSP*.

Exercise 3

5 points

Let (\mathcal{T}, \preceq) be a single-depot aperiodic vehicle scheduling instance with optimal fleet size ν . Let $Q \subseteq \mathcal{T}$ be a subset of trips with the property that $t \in Q$ implies $t' \in Q$ for all trips $t' \in \mathcal{T}$ for which there is a chain $t' = t_1 \preceq \cdots \preceq t_r = t$. Define

$$X := \{p\} \cup \{d_t \mid t \in Q\} \cup \{a_t \mid t \in Q\} \subseteq V(\mathcal{N}(\mathcal{T}, \preceq))$$

Prove that if f is an optimal p-q-flow in $\mathcal{N}(\mathcal{T}, \preceq)$ of value ν , then $\sum_{e \in \delta^+(X)} f_e = \nu$.

5 points

10 points