Problem Set 14

due: February 4, 2020

Exercise 1

20 points
Consider the 7×8-matrix

$$
A:=\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 1 & 0 & 0 & -1 \\
0 & 0 & 0 & -1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & -1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & -1 & 0
\end{array}\right) .
$$

(a) Construct a directed graph $G=(V, E)$ such that A is the vertex-edge incidence matrix of G. Make a planar drawing of G.
(b) Find pairwise distinct vertices $s_{1}, s_{2}, t_{1}, t_{2} \in V$ such that the relaxed maximum twocommodity flow problem

$$
\begin{array}{ll}
\text { Maximize } & \\
\text { s.t. } & \\
\sum_{e \in \delta^{+}\left(s_{1}\right)} f_{e}^{1}+\sum_{e \in \delta^{+}\left(s_{2}\right)} f_{e}^{2} & \\
\sum_{e \in \delta^{+}(v)} f_{e}^{1}-\sum_{e \in \delta^{-}(v)} f_{e}^{1}=0, & v \in V \backslash\left\{s_{1}, t_{1}\right\}, \\
\sum_{e \in \delta^{+}(v)} f_{e}^{2}-\sum_{e \in \delta^{-}(v)} f_{e}^{2}=0, & e \in V \backslash\left\{s_{2}, t_{2}\right\}, \\
f_{e}^{1}+f_{e}^{2} \leq 1, & e \in E, \\
0 \leq f_{e}^{1} \leq 1, & e \in E,
\end{array}
$$

on the digraph G from (a) has a non-integral optimal solution. In particular, compute an optimal integral solution (i.e., $f_{e}^{1}, f_{e}^{2} \in\{0,1\}$ for all $e \in E$) and show that the value of flow is less than in your fractional solution.
(c) Compute the dimension of the polytope in \mathbb{R}^{16} defined by the system of linear (in)equalities in (b) for your choice of $s_{1}, s_{2}, t_{1}, t_{2}$ satisfying the requirements of (b).
(d) Denote by I the 8×8 identity matrix. Find a regular 16×16 submatrix B of

$$
\left(\begin{array}{cc}
A & 0 \\
0 & A \\
I & I \\
I & 0 \\
0 & I
\end{array}\right)
$$

and an integer right-hand side $b \in\{0,1\}^{16}$ such that $B^{-1} b$ is not integral.
Hint: The fractional solution of (b) defines a vertex of the polytope of (c), which in turn defines a basis matrix similar to Problem Set 11.

