Problem Set 4

due: November 11, 2019

Exercise 1

8 points
In the last exercise session we proved that the decision version of the Resource Constrained Shortest Path Problem is $\mathcal{N} \mathcal{P}$-complete. However, instances of the problem where all arc weights are equal can be solved in polynomial time.

Unit-Weight Resource Constrained Shortest Path Problem
INSTANCE: Graph $G=(V, E)$, start and end nodes $s, t \in V$, edge lengths $l_{e} \in \mathbb{N}$ for $e \in E$, edge weight $w \in \mathbb{N}$ for all edges, and weight limit $W \in \mathbb{N}$.
TASK: Find a shortest (s, t)-path in G with respect to the edge lengths l_{e} such that the sum of the edge weights along the path does not exceed W.

Find a polynomial-time algorithm for the Unit-Weight Resource Constrained Shortest Path Problem and analyze its running time.

Exercise 2
6 points
Show that the decision version of the Longest Circuit Problem is $\mathcal{N} \mathcal{P}$-complete.

Longest Circuit Problem

INSTANCE: Graph $G=(V, E)$, edge lengths $l_{e} \in \mathbb{N}$ for $e \in E$, threshold $L \in \mathbb{N}$.
QUESTION: Is there a circuit C in G such that the sum of the edge lengths in C is at least L ?
Hint: For the reduction use the Hamiltonian Circuit Problem presented in the lecture.

Exercise 3

Let $G=(V, E)$ be a connected undirected graph. A bridge of G is an edge in E whose removal disconnects G. Let $T \subseteq V$ be the set of odd-degree vertices of G.
Prove that an edge $e \in E$ is a bridge if and only if e is contained in every T-join.

