Problem Set 7

due: December 2, 2019

Exercise 1

Let $G=(V, E)$ be a directed simple graph. Pick two distinct vertices $s, t \in V$. Further let $c \in \mathbb{R}^{E}$ be an arbitrary cost vector. Define $b \in\{-1,0,1\}^{V}$ via

$$
b_{v}:= \begin{cases}1 & \text { if } v=s \\ -1 & \text { if } v=t \\ 0 & \text { otherwise }\end{cases}
$$

and consider the integer program
Minimize

$$
\begin{array}{cc}
\sum_{e \in E} c_{e} x_{e} & \\
\sum_{e \in \delta^{+}(v)} x_{e}-\sum_{e \in \delta^{-}(v)} x_{e}=b_{v}, & v \in V, \\
x_{e} \in\{0,1\}, & e \in E .
\end{array}
$$

s.t.

Here, we define for an arbitrary set $S \subseteq V$ the edge sets

$$
\begin{aligned}
\delta^{+}(S) & :=\{(v, w) \in E \mid v \in S, w \notin S\}, \\
\delta^{-}(S) & :=\{(v, w) \in E \mid v \notin S, w \in S\},
\end{aligned}
$$

and for a vertex $v \in V$, we write $\delta^{ \pm}(v)$ for $\delta^{ \pm}(\{v\})$.
(a) Characterize all feasible solutions to the integer program (\mid | .
(b) Why is an optimal solution to (\star not necessarily an incidence vector of a shortest s - t-path?
(c) Prove that a feasible solution x to (\star) is an incidence vector of an s - t-path if and only if

$$
\begin{aligned}
& \sum_{e \in \delta^{+}(s)} x_{e}=1 \\
& \sum_{e \in \delta^{+}(t)} x_{e}=0 \\
& \sum_{e \in \delta^{+}(S)} x_{e} \geq \sum_{e \in \delta^{+}(v)} x_{e} \quad \text { for all } S \subsetneq V \text { s.t. } s \in S, \text { for all } v \in V \backslash S .
\end{aligned}
$$

Exercise 2

Let $G=(V, E)$ be an undirected graph with cost vector $c \in \mathbb{R}_{\geq 0}^{E}$. A perfect 2-matching in G is a feasible solution to the integer program
Minimize

$$
\sum_{e \in E} c_{e} x_{e}
$$

(\triangle)
s.t.

$$
\begin{aligned}
\sum_{e \in \delta(v)} x_{e} & =2 \\
x_{e} & \in\{0,1,2\}
\end{aligned}
$$

$$
v \in V
$$

$$
e \in E
$$

where $\delta(v)$ is the set of edges in E incident to $v \in V$. An optimal solution to \triangle is called a minimum cost perfect 2-matching.
(a) Prove that the cost of a minimum cost perfect 2-matching on a complete graph is a lower bound on the cost of an optimal TSP tour.
(b) Let x be a feasible solution to $\triangle \triangle$. Show that $\left\{e \in E \mid x_{e}=1\right\}$ is a union of vertex-disjoint circuits.
(c) Prove that if G is bipartite and \triangle) is feasible, then there is always a minimum cost perfect 2 -matching x with $x_{e} \in\{0,2\}$ for all $e \in E$, i.e., x is a "double perfect matching".
(d) Construct a non-bipartite graph G with a cost vector $c \in \mathbb{R}_{\geq 0}^{E}$ such that G has a perfect matching, and no perfect 2-matching x with $x_{e} \in\{0,2\}$ for all $e \in E$ is of minimum cost.

Exercise 3

Let $G=(V, E)$ be a connected undirected graph with cost vector $c \in \mathbb{R}_{\geq 0}^{E}$ and let $T \subseteq V$ be of even cardinality. Formulate an integer linear program with $|V|+|E|$ integer variables that solves the minimum cost T-join problem on (G, c), and prove its correctness.

