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§1 Introduction

Line Networks → Periodic Timetables

two lines meeting at a common station
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Line Networks → Periodic Timetables
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§1 Introduction

Periodic Event Scheduling Problem
Serafini and Ukovich (1989)

Given

I a digraph G = (V ,A) (event-activity network),

I a period time T ∈ N,

I lower and upper bounds `, u ∈ ZA
≥0, ` ≤ u,

I weights w ∈ ZA
≥0,

the Periodic Event Scheduling Problem (PESP) is to find a
periodic timetable π ∈ {0, 1, . . . ,T − 1}V and a periodic tension x ∈ ZA

such that

I πj − πi ≡ xij mod T for all ij ∈ A,

I ` ≤ x ≤ u,

I w tx is minimum.

Equivalently, minimize the weighted periodic slack w ty , where y := x − `.
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§1 Introduction

Solving PESP Instances

Solution Approaches

I branch-and-cut/mixed integer programming (Liebchen, Peeters, . . . )

I modulo network simplex heuristic (Nachtigall, Opitz, Goerigk, . . . )

I line cluster matching heuristic (Pätzold, Schöbel)

I Boolean satisfiability (Großmann, Nachtigall, . . . )

I . . .

PESPlib

I 20 very hard PESP instances

I no instance solved to optimality, current best gap: 34.64%

I maintained by Marc Goerigk

 num.math.uni-goettingen.de/~m.goerigk/pesplib
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§1 Introduction

PESPlib: R1L1

after preprocessing: 1 214 vertices, 3 935 arcs, 2 722 linearly independent cycles
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§1 Introduction

PESPlib: R1L1

current best timetable, weighted slack = 30 415 672
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§2

T -Partitions
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§2 T -Partitions

Trivial Observations

Timetables and T -Partitions

I Any vector π ∈ {0, . . . ,T − 1}V partitions the vertex set V into T
possibly empty sets:

V =
.⋃

d∈{0,...,T−1}

{v ∈ V | πv = d}.

I Conversely, any T -partition (V0, . . . ,VT−1) of V yields a vector
π ∈ {0, . . . ,T − 1}V .

Addition and Subtraction modulo T
From any π1 ∈ {0, . . . ,T − 1}V , we can obtain any π ∈ {0, . . . ,T − 1}V
by adding (mod T ) some other vector π2 ∈ {0, . . . ,T − 1}V .
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§2 T -Partitions

Striving for Optimality

Lemma
For every π ∈ {0, . . . ,T − 1}V , there is a T -partition V := (V0, . . . ,VT−1)
such that the periodic timetable πV defined by

πVv := [πv + d ]T , v ∈ Vd , d = 0, . . . ,T − 1,

is feasible and has minimum weighted slack.

Maximally Improving T -Partition Problem

Find such a πV . I.e., for a given π ∈ {0, . . . ,T − 1} with slack y , find a
T -partition V = (V0, . . . ,VT−1) maximizing

T−1∑
d=0

T−1∑
e=0

∑
ij∈A∩(Vd×Ve)

wij (yij − [yij − d + e]T )

subject to [yij − d + e]T ≤ uij − `ij for all ij ∈ A.
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§2 T -Partitions

Delay Cuts

Remarks

I This relates PESP to Graph Partitioning and Minimum Cuts:
As w.l.o.g. y ≤ T − 1 and hence y = [y ]T , the contribution
yij − [yij − d + e]T of arcs belonging to the same part of the
T -partition to the objective function is 0.

I Finding a maximally improving T -partition is as difficult as solving
PESP.

I Idea for heuristics: Restrict to special classes of T -partitions.

Delay Cuts (Goerigk, Schöbel: Multi-Node Cuts)

For S ⊆ V and d ∈ {0, . . . ,T − 1}, the delay cut ∆(S , d) is defined as the
T -partition

(V \ S , ∅, . . . , ∅,S
↑
, ∅, . . . , ∅).

d

Intuitively, all events in S get delayed by d .
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§2 T -Partitions

Examples of Delay Cuts

I Modulo network simplex (Nachtigall, Opitz, 2008):
A move of the modulo network simplex is a delay cut corresponding to
the fundamental cut of the forest arc. The delay depends on the
co-forest arc.
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I Single-node cuts (Nachtigall, Voget, 1996): Delay cuts with |S | = 1.
I Waiting edge cuts (Goerigk, Schöbel, 2012): Delay cuts with |S | = 2,

the vertices of S are connected by an arc with small span u − `.
I Multi-node cuts (Goerigk, Schöbel, 2012): Delay cuts obtained by a

greedy procedure.
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§2 T -Partitions

Maximally Improving Delay Cuts

Maximally Improving Delay Cut Problem
For a given periodic timetable π, find the delay cut ∆(S , d) maximizing∑

ij∈δ+(S)

wij (yij − [yij − d ]T ) +
∑

ij∈δ−(S)

wij (yij − [yij + d ]T )

such that π∆(S,d) is feasible.

Lemma
For fixed d , finding a maximally improving delay cut can be transformed to
a standard maximum cut problem with linear objective, with both positive
and negative weights.

Remarks
I Although NP-hard, the maximum cut problem can be solved within a

reasonable amount of time (Borndörfer, Lindner, Roth, 2019).

I If there is no improving delay cut, then there is also no improving
move for modulo network simplex, single- and multi-node cuts.
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Separators
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§3 Separators

Definition

Idea
I Divide and conquer!

I Top-down instead of bottom-up
(Matching approach of Pätzold and Schöbel, ATMOS 2016)

Definition
Let (G ,T , `, u,w) be a PESP instance, G = (V ,A). For ν : 2V → R≥0

and an imbalance α ≥ 1, a (ν, α)-separator is a subset S ⊆ V s.t.

I δ(S) contains only free arcs, i.e., ij ∈ A with uij − `ij ≥ T − 1,

I w(δ(S)) is minimum,

I ν(V \ S) ≤ ν(S) ≤ α · ν(V \ S).

Examples
I ν(X ) := |X | (balances number of vertices)

I ν(X ) := |A(G [X ])| − |X |+ 1 (≈ balances cyclomatic number)
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§3 Separators

Computational Aspects
Separating
I Computing optimal vertex-balanced cuts is NP-hard.

I Lots of heuristic software is available (e.g., Metis, KaHIP, FlowCutter),
but usually only for simple ν.

I We provide mixed integer linear programs with |V | binary variables for
the vertex-balanced and cycle-balanced cases.

I Non-free arcs may be contracted, orientation of arcs is irrelevant.

Combining
I As all arcs in δ(S) are free in a (ν, α)-separator S , feasible timetables

on the parts can always be combined to a feasible timetable on the
original instance.

I We may apply a delay cut ∆(S , d) to S to get a better timetable, the
slacks in the parts remain unchanged.

I If L1, L2 are lower bounds for the weighted slack on the parts, then
L1 + L2 is a lower bound for the weighted slack on the whole instance.
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§3 Separators

Experiments

Instances
I 16 PESPlib railway instances RxLy

I 4 BLx bus instances omitted
(≤ 3 vertices left after contracting non-free arcs)

Separators

I vertex- and cycle-balanced separators, α ∈ {1.05, 1.1, 1.2, 1.5}
I initial solution by Metis (vertex case)

I MIP: Gurobi 8.1, 20 minutes, 8 threads

Periodic Timetabling

I concurrent PESP solver including MIP (CPLEX 12.8), MNS, Max Cut

I 10 minutes on each part vs. 20 minutes on full instance, 7 threads

I primal run and dual run
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§3 Separators

R1L1

event-activity network after preprocessing, 2 722 linearly independent cycles
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§3 Separators

R1L1

cycle-balanced separator, imbalance 1.2 (1.1975), weight 654 851, gap 36.3%
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§3 Separators

R1L1

only free arcs
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§3 Separators

R1L1

left right cut combined original

cyclomatic number 782 653 466 2 722
weight 29 076 540 17 441 343 654 851 47 172 734
free weight 1 163 077 239 478 654 851 2 057 406
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§3 Separators

2× 10 minutes of R1L1

left right cut combined original

cyclomatic number 782 653 466 2 722
weight 29 076 540 17 441 343 654 851 47 172 734
free weight 1 163 077 239 478 654 851 2 057 406

primal bound 15 029 848 2 985 689 16 653 876 34 669 413 30 861 021
dual bound 10 518 964 2 341 735 0 12 860 699 16 868 573
∅ free wt. slack 11.13 11.15 25.43 15.68 13.15
∅ non-free wt. slack 0.07 0.02 – 0.05 0.08
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§3 Separators

Optimality Gaps

optimality gaps for vertex- and cycle-balanced separators
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§3 Separators

Primal and Dual Bounds

primal and dual bounds, original (darker) and best combined (brighter)
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§3 Separators

The Last Slide

Conclusions

I The separator strategy has a structural disadvantage: The arcs in the
cut receive a disproportionately high amount of slack.

I The cuts are too heavy in order to produce better primal bounds.

I However, the strategy pays off for dual bounds on larger instances.

Future Tasks

I find better functions ν, e.g., balancing the free weight

I close the optimality gap for (α, ν)-separators

I investigate methods for better dual bounds for PESP

I solve the parts to optimality

I more flexible combining of parts
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