
A Concurrent Approach to the
Periodic Event Scheduling Problem

Ralf Borndörfer, Niels Lindner, Sarah Roth

Zuse Institute Berlin

RailNorrköping 2019

June 18, 2019

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 1 / 26

§1

Introduction

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 2 / 26

§1 Introduction

Periodic Timetabling Example

two lines meeting at a common station

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 3 / 26

§1 Introduction

Periodic Timetabling Example

arrival event

departure event

driving activity

transfer activity

turnaround activity

event-activity network model

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 3 / 26

§1 Introduction

Periodic Timetabling Example

[7, 7]

[7, 7]

[6, 6]

[6, 6]

[2, 11]

[5, 14] [5, 14]

[2, 11]

[3, 12]

arrival event

departure event

driving activity

transfer activity

turnaround activity

PESP instance (still unweighted), period time T = 10

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 3 / 26

§1 Introduction

Periodic Timetabling Example

0 7 9 5

8463

7

7

6

6

2

9 5

2

3

arrival event

departure event

driving activity

transfer activity

turnaround activity

periodic timetable, period time T = 10

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 3 / 26

§1 Introduction

Periodic Event Scheduling Problem

Serafini and Ukovich (1989)

Given

I an event-activity network G = (V ,E),

I a period time T ∈ N,

I lower bounds ` ∈ ZE , ` ≥ 0,

I upper bounds u ∈ ZE , u ≥ `,
I weights w ∈ RE , w ≥ 0,

I ` ≤ x ≤ u,

I
∑

ij∈E wijxij is minimal.

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 4 / 26

§1 Introduction

Periodic Event Scheduling Problem

Serafini and Ukovich (1989)

Given

I an event-activity network G = (V ,E),

I a period time T ∈ N,

I lower bounds ` ∈ ZE , ` ≥ 0,

I upper bounds u ∈ ZE , u ≥ `,
I weights w ∈ RE , w ≥ 0,

the (integer) periodic event scheduling problem (PESP) is to find a
periodic timetable π ∈ {0, 1, . . . ,T − 1}V and a periodic tension x ∈ ZE

such that

I ` ≤ x ≤ u,

I
∑

ij∈E wijxij is minimal.

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 4 / 26

§1 Introduction

Periodic Event Scheduling Problem
Serafini and Ukovich (1989)

Given

I an event-activity network G = (V ,E),

I a period time T ∈ N,

I lower bounds ` ∈ ZE , ` ≥ 0,

I upper bounds u ∈ ZE , u ≥ `,
I weights w ∈ RE , w ≥ 0,

the (integer) periodic event scheduling problem (PESP) is to find a
periodic timetable π ∈ {0, 1, . . . ,T − 1}V and a periodic tension x ∈ ZE

such that

I ` ≤ x ≤ u,

I
∑

ij∈E wijxij is minimal.

Equivalently, one can minimize
∑

ij∈E wijyij , where y := x − ` denotes the
periodic slack.

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 4 / 26

§1 Introduction

Cycle Periodicity Property

Oriented Cycles

Theorem (Cycle Periodicity Property, Odijk 1994)

Let (G ,T , `, u,w) be a PESP instance. Let x ∈ ZE be a vector with
` ≤ x ≤ u. Then the following are equivalent:

(1) There exists a periodic timetable π compatible to x.

(2) For every incidence vector γ ∈ {−1, 0, 1}E of an oriented cycle in G
holds γtx ≡ 0 mod T.

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 5 / 26

§1 Introduction

Cycle Periodicity Property

Oriented Cycles

1

1

1 1

Theorem (Cycle Periodicity Property, Odijk 1994)

Let (G ,T , `, u,w) be a PESP instance. Let x ∈ ZE be a vector with
` ≤ x ≤ u. Then the following are equivalent:

(1) There exists a periodic timetable π compatible to x.

(2) For every incidence vector γ ∈ {−1, 0, 1}E of an oriented cycle in G
holds γtx ≡ 0 mod T.

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 5 / 26

§1 Introduction

Cycle Periodicity Property

Oriented Cycles

1

−1 −1

1

Theorem (Cycle Periodicity Property, Odijk 1994)

Let (G ,T , `, u,w) be a PESP instance. Let x ∈ ZE be a vector with
` ≤ x ≤ u. Then the following are equivalent:

(1) There exists a periodic timetable π compatible to x.

(2) For every incidence vector γ ∈ {−1, 0, 1}E of an oriented cycle in G
holds γtx ≡ 0 mod T.

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 5 / 26

§1 Introduction

Cycle Periodicity Property

Oriented Cycles

0 7 9 5

8463

7

7

6

6

2

9 5

2

3

Theorem (Cycle Periodicity Property, Odijk 1994)

Let (G ,T , `, u,w) be a PESP instance. Let x ∈ ZE be a vector with
` ≤ x ≤ u. Then the following are equivalent:

(1) There exists a periodic timetable π compatible to x.

(2) For every incidence vector γ ∈ {−1, 0, 1}E of an oriented cycle in G
holds γtx ≡ 0 mod T.

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 5 / 26

§2

Solving PESP

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 6 / 26

§2 Solving PESP

Existing Approaches

Mixed Integer Programming (MIP, Liebchen, 2006)

I global, but slow

I several formulations, weak linear programming relaxations

I cutting planes by e.g. (change-)cycle inequalities

Modulo Network Simplex (MNS, Nachtigall/Opitz, 2008)

I fast, but local, improving heuristic

I vertices of timetabling polytope ↔ spanning tree structures

I various escape strategies

Boolean Satisfiability (SAT, Großmann et al., 2012)

I pseudo-polynomial transformations

I feasibility: SAT solver (very fast)

I optimality: weighted partial MaxSAT solver (very slow)

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 7 / 26

§2 Solving PESP

Existing Approaches

Mixed Integer Programming (MIP, Liebchen, 2006)

I global, but slow

I several formulations, weak linear programming relaxations

I cutting planes by e.g. (change-)cycle inequalities

Modulo Network Simplex (MNS, Nachtigall/Opitz, 2008)

I fast, but local, improving heuristic

I vertices of timetabling polytope ↔ spanning tree structures

I various escape strategies

Boolean Satisfiability (SAT, Großmann et al., 2012)

I pseudo-polynomial transformations

I feasibility: SAT solver (very fast)

I optimality: weighted partial MaxSAT solver (very slow)

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 7 / 26

§2 Solving PESP

Existing Approaches

Mixed Integer Programming (MIP, Liebchen, 2006)

I global, but slow

I several formulations, weak linear programming relaxations

I cutting planes by e.g. (change-)cycle inequalities

Modulo Network Simplex (MNS, Nachtigall/Opitz, 2008)

I fast, but local, improving heuristic

I vertices of timetabling polytope ↔ spanning tree structures

I various escape strategies

Boolean Satisfiability (SAT, Großmann et al., 2012)

I pseudo-polynomial transformations

I feasibility: SAT solver (very fast)

I optimality: weighted partial MaxSAT solver (very slow)

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 7 / 26

§2 Solving PESP

Existing Approaches

Mixed Integer Programming (MIP, Liebchen, 2006)

I global, but slow

I several formulations, weak linear programming relaxations

I cutting planes by e.g. (change-)cycle inequalities

Modulo Network Simplex (MNS, Nachtigall/Opitz, 2008)

I fast, but local, improving heuristic

I vertices of timetabling polytope ↔ spanning tree structures

I various escape strategies

Boolean Satisfiability (SAT, Großmann et al., 2012)

I pseudo-polynomial transformations

I feasibility: SAT solver (very fast)

I optimality: weighted partial MaxSAT solver (very slow)

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 7 / 26

§2 Solving PESP

Existing Approaches

Mixed Integer Programming (MIP, Liebchen, 2006)

I global, but slow

I several formulations, weak linear programming relaxations

I cutting planes by e.g. (change-)cycle inequalities

Modulo Network Simplex (MNS, Nachtigall/Opitz, 2008)

I fast, but local, improving heuristic

I vertices of timetabling polytope ↔ spanning tree structures

I various escape strategies

Boolean Satisfiability (SAT, Großmann et al., 2012)

I pseudo-polynomial transformations

I feasibility: SAT solver (very fast)

I optimality: weighted partial MaxSAT solver (very slow)

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 7 / 26

§2 Solving PESP

Existing Approaches

Mixed Integer Programming (MIP, Liebchen, 2006)

I global, but slow

I several formulations, weak linear programming relaxations

I cutting planes by e.g. (change-)cycle inequalities

Modulo Network Simplex (MNS, Nachtigall/Opitz, 2008)

I fast, but local, improving heuristic

I vertices of timetabling polytope ↔ spanning tree structures

I various escape strategies

Boolean Satisfiability (SAT, Großmann et al., 2012)

I pseudo-polynomial transformations

I feasibility: SAT solver (very fast)

I optimality: weighted partial MaxSAT solver (very slow)

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 7 / 26

§2 Solving PESP

Existing Approaches

Mixed Integer Programming (MIP, Liebchen, 2006)

I global, but slow

I several formulations, weak linear programming relaxations

I cutting planes by e.g. (change-)cycle inequalities

Modulo Network Simplex (MNS, Nachtigall/Opitz, 2008)

I fast, but local, improving heuristic

I vertices of timetabling polytope ↔ spanning tree structures

I various escape strategies

Boolean Satisfiability (SAT, Großmann et al., 2012)

I pseudo-polynomial transformations

I feasibility: SAT solver (very fast)

I optimality: weighted partial MaxSAT solver (very slow)

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 7 / 26

§2 Solving PESP

Existing Approaches

Mixed Integer Programming (MIP, Liebchen, 2006)

I global, but slow

I several formulations, weak linear programming relaxations

I cutting planes by e.g. (change-)cycle inequalities

Modulo Network Simplex (MNS, Nachtigall/Opitz, 2008)

I fast, but local, improving heuristic

I vertices of timetabling polytope ↔ spanning tree structures

I various escape strategies

Boolean Satisfiability (SAT, Großmann et al., 2012)

I pseudo-polynomial transformations

I feasibility: SAT solver (very fast)

I optimality: weighted partial MaxSAT solver (very slow)

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 7 / 26

§2 Solving PESP

Existing Approaches

Mixed Integer Programming (MIP, Liebchen, 2006)

I global, but slow

I several formulations, weak linear programming relaxations

I cutting planes by e.g. (change-)cycle inequalities

Modulo Network Simplex (MNS, Nachtigall/Opitz, 2008)

I fast, but local, improving heuristic

I vertices of timetabling polytope ↔ spanning tree structures

I various escape strategies

Boolean Satisfiability (SAT, Großmann et al., 2012)

I pseudo-polynomial transformations

I feasibility: SAT solver (very fast)

I optimality: weighted partial MaxSAT solver (very slow)

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 7 / 26

§2 Solving PESP

Existing Approaches

Mixed Integer Programming (MIP, Liebchen, 2006)

I global, but slow

I several formulations, weak linear programming relaxations

I cutting planes by e.g. (change-)cycle inequalities

Modulo Network Simplex (MNS, Nachtigall/Opitz, 2008)

I fast, but local, improving heuristic

I vertices of timetabling polytope ↔ spanning tree structures

I various escape strategies

Boolean Satisfiability (SAT, Großmann et al., 2012)

I pseudo-polynomial transformations

I feasibility: SAT solver (very fast)

I optimality: weighted partial MaxSAT solver (very slow)

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 7 / 26

§2 Solving PESP

Network Simplification

[7, 7]

[7, 7]

[6, 6]

[6, 6]

[2, 11]

[5, 14] [5, 14]

[2, 11]

[3, 12]

Preprocessing

I remove bridges (i.e., activities that are not part of any cycle)

I remove isolated events

I contract fixed activities (i.e., `a = ua)

I contract events of degree two (inexact)

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 8 / 26

§2 Solving PESP

Network Simplification

[7, 7]

[7, 7]

[6, 6]

[6, 6]

[2, 11]

[5, 14] [5, 14]

[2, 11]

[3, 12]

Preprocessing

I remove bridges (i.e., activities that are not part of any cycle)

I remove isolated events

I contract fixed activities (i.e., `a = ua)

I contract events of degree two (inexact)

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 8 / 26

§2 Solving PESP

Network Simplification

[6, 6]

[6, 6]

[2, 11]

[5, 14] [5, 14]

[2, 11]

[3, 12]

Preprocessing

I remove bridges (i.e., activities that are not part of any cycle)

I remove isolated events

I contract fixed activities (i.e., `a = ua)

I contract events of degree two (inexact)

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 8 / 26

§2 Solving PESP

Network Simplification

[6, 6]

[6, 6]

[2, 11]

[5, 14] [5, 14]

[2, 11]

[3, 12]

Preprocessing

I remove bridges (i.e., activities that are not part of any cycle)

I remove isolated events

I contract fixed activities (i.e., `a = ua)

I contract events of degree two (inexact)

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 8 / 26

§2 Solving PESP

Network Simplification

[6, 6]

[6, 6]

[2, 11]

[5, 14] [5, 14]

[2, 11]

[3, 12]

Preprocessing

I remove bridges (i.e., activities that are not part of any cycle)

I remove isolated events

I contract fixed activities (i.e., `a = ua)

I contract events of degree two (inexact)

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 8 / 26

§2 Solving PESP

Network Simplification

[6, 6]

[6, 6]

[2, 11]

[5, 14] [5, 14]

[2, 11]

[3, 12]

Preprocessing

I remove bridges (i.e., activities that are not part of any cycle)

I remove isolated events

I contract fixed activities (i.e., `a = ua)

I contract events of degree two (inexact)

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 8 / 26

§2 Solving PESP

Network Simplification

[2, 11]

[5, 14]

[9, 18]

[1, 10]

[8, 17]

Preprocessing

I remove bridges (i.e., activities that are not part of any cycle)

I remove isolated events

I contract fixed activities (i.e., `a = ua)

I contract events of degree two (inexact)

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 8 / 26

§2 Solving PESP

Network Simplification

[2, 11]

[5, 14]

[9, 18]

[1, 10]

[8, 17]

Preprocessing

I remove bridges (i.e., activities that are not part of any cycle)

I remove isolated events

I contract fixed activities (i.e., `a = ua)

I contract events of degree two (inexact)

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 8 / 26

§2 Solving PESP

Network Simplification

[9, 18]

[1, 10]

[6, 15]

Preprocessing

I remove bridges (i.e., activities that are not part of any cycle)

I remove isolated events

I contract fixed activities (i.e., `a = ua)

I contract events of degree two (inexact)

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 8 / 26

§2 Solving PESP

Network Simplification

9

8

[9, 18]

[1, 10]

[6, 15]

Preprocessing

I remove bridges (i.e., activities that are not part of any cycle)

I remove isolated events

I contract fixed activities (i.e., `a = ua)

I contract events of degree two (inexact)

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 8 / 26

§2 Solving PESP

Ignoring Light Free Activities

Idea (Goerigk/Liebchen, 2017)

Removing free activities does not affect feasibility. The number of arcs,
linearly independent cycles, and the objective value decrease.

Ignore r %

1. Sort the free activities in ascending order w.r.t. weight.

2. Delete the first activities until a certain ratio r % of the total free
weight has been removed.

3. Apply network preprocessing again.

Remarks

I Ignore 0 %: original network after preprocessing

I If the total free weight is W , then the decrease in weighted slack is at
most r % ·W · (T − 1).

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 9 / 26

§2 Solving PESP

Ignoring Light Free Activities

Idea (Goerigk/Liebchen, 2017)

Removing free activities does not affect feasibility. The number of arcs,
linearly independent cycles, and the objective value decrease.

Ignore r %

1. Sort the free activities in ascending order w.r.t. weight.

2. Delete the first activities until a certain ratio r % of the total free
weight has been removed.

3. Apply network preprocessing again.

Remarks

I Ignore 0 %: original network after preprocessing

I If the total free weight is W , then the decrease in weighted slack is at
most r % ·W · (T − 1).

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 9 / 26

§2 Solving PESP

Ignoring Light Free Activities

Idea (Goerigk/Liebchen, 2017)

Removing free activities does not affect feasibility. The number of arcs,
linearly independent cycles, and the objective value decrease.

Ignore r %

1. Sort the free activities in ascending order w.r.t. weight.

2. Delete the first activities until a certain ratio r % of the total free
weight has been removed.

3. Apply network preprocessing again.

Remarks

I Ignore 0 %: original network after preprocessing

I If the total free weight is W , then the decrease in weighted slack is at
most r % ·W · (T − 1).

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 9 / 26

§2 Solving PESP

Ignoring Light Free Activities

Idea (Goerigk/Liebchen, 2017)

Removing free activities does not affect feasibility. The number of arcs,
linearly independent cycles, and the objective value decrease.

Ignore r %

1. Sort the free activities in ascending order w.r.t. weight.

2. Delete the first activities until a certain ratio r % of the total free
weight has been removed.

3. Apply network preprocessing again.

Remarks

I Ignore 0 %: original network after preprocessing

I If the total free weight is W , then the decrease in weighted slack is at
most r % ·W · (T − 1).

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 9 / 26

§2 Solving PESP

Ignoring Light Free Activities

Idea (Goerigk/Liebchen, 2017)

Removing free activities does not affect feasibility. The number of arcs,
linearly independent cycles, and the objective value decrease.

Ignore r %

1. Sort the free activities in ascending order w.r.t. weight.

2. Delete the first activities until a certain ratio r % of the total free
weight has been removed.

3. Apply network preprocessing again.

Remarks

I Ignore 0 %: original network after preprocessing

I If the total free weight is W , then the decrease in weighted slack is at
most r % ·W · (T − 1).

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 9 / 26

§2 Solving PESP

State of the Art in 2017

Algorithm (Goerigk/Liebchen, 2017)

1. Find an initial solution using constraint programming.

2. Ignore 50 %. 15 minutes MNS. 45 minutes MIP.

3. Ignore 30 %. 15 minutes MNS. 45 minutes MIP.

4. Ignore 18 %. 15 minutes MNS. 45 minutes MIP.
...
(for 8 hours in total)

Idea
MNS provides solutions fast, and MIP helps MNS out of local optima.

Our Goal
Combine MNS, MIP and other powerful methods to a concurrent solver.

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 10 / 26

§2 Solving PESP

State of the Art in 2017

Algorithm (Goerigk/Liebchen, 2017)

1. Find an initial solution using constraint programming.

2. Ignore 50 %. 15 minutes MNS. 45 minutes MIP.

3. Ignore 30 %. 15 minutes MNS. 45 minutes MIP.

4. Ignore 18 %. 15 minutes MNS. 45 minutes MIP.
...
(for 8 hours in total)

Idea
MNS provides solutions fast, and MIP helps MNS out of local optima.

Our Goal
Combine MNS, MIP and other powerful methods to a concurrent solver.

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 10 / 26

§2 Solving PESP

State of the Art in 2017

Algorithm (Goerigk/Liebchen, 2017)

1. Find an initial solution using constraint programming.

2. Ignore 50 %. 15 minutes MNS. 45 minutes MIP.

3. Ignore 30 %. 15 minutes MNS. 45 minutes MIP.

4. Ignore 18 %. 15 minutes MNS. 45 minutes MIP.
...
(for 8 hours in total)

Idea
MNS provides solutions fast, and MIP helps MNS out of local optima.

Our Goal
Combine MNS, MIP and other powerful methods to a concurrent solver.

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 10 / 26

§2 Solving PESP

State of the Art in 2017

Algorithm (Goerigk/Liebchen, 2017)

1. Find an initial solution using constraint programming.

2. Ignore 50 %. 15 minutes MNS. 45 minutes MIP.

3. Ignore 30 %. 15 minutes MNS. 45 minutes MIP.

4. Ignore 18 %. 15 minutes MNS. 45 minutes MIP.
...
(for 8 hours in total)

Idea
MNS provides solutions fast, and MIP helps MNS out of local optima.

Our Goal
Combine MNS, MIP and other powerful methods to a concurrent solver.

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 10 / 26

§2 Solving PESP

State of the Art in 2017

Algorithm (Goerigk/Liebchen, 2017)

1. Find an initial solution using constraint programming.

2. Ignore 50 %. 15 minutes MNS. 45 minutes MIP.

3. Ignore 30 %. 15 minutes MNS. 45 minutes MIP.

4. Ignore 18 %. 15 minutes MNS. 45 minutes MIP.
...
(for 8 hours in total)

Idea
MNS provides solutions fast, and MIP helps MNS out of local optima.

Our Goal
Combine MNS, MIP and other powerful methods to a concurrent solver.

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 10 / 26

§2 Solving PESP

State of the Art in 2017

Algorithm (Goerigk/Liebchen, 2017)

1. Find an initial solution using constraint programming.

2. Ignore 50 %. 15 minutes MNS. 45 minutes MIP.

3. Ignore 30 %. 15 minutes MNS. 45 minutes MIP.

4. Ignore 18 %. 15 minutes MNS. 45 minutes MIP.
...
(for 8 hours in total)

Idea
MNS provides solutions fast, and MIP helps MNS out of local optima.

Our Goal
Combine MNS, MIP and other powerful methods to a concurrent solver.

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 10 / 26

§2 Solving PESP

Concurrent Solver Architecture

Final

Problem

Master

Problem

Ignore

Problem

PESP instance

Exact

preprocessing

Heuristic

preprocessing

PESP solution

Master

MIP

Master

Solution Pool

Ignore

MIP

Ignore

Solution Pool

Expand & Shrink

Further Heuristics

Master

MNS

Final

MIP

Ignore

MNS

Concurrent phase

Ignore

Max-Cut

Master

Max-Cut

I Two problems at the
same time: Master, Ignore

I Master: preprocessed input
instance, does not change

I Ignore: ignore light free
activities, can change

I Each problem is tackled
with MIP, MNS, Max-Cut

I Algorithms run in parallel
and talk to a common
solution pool

I Further heuristic: Solve LP
for fixed integer variables

I Initial solution: SAT solver

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 11 / 26

§2 Solving PESP

Concurrent Solver Architecture

Final

Problem

Master

Problem

Ignore

Problem

PESP instance

Exact

preprocessing

Heuristic

preprocessing

PESP solution

Master

MIP

Master

Solution Pool

Ignore

MIP

Ignore

Solution Pool

Expand & Shrink

Further Heuristics

Master

MNS

Final

MIP

Ignore

MNS

Concurrent phase

Ignore

Max-Cut

Master

Max-Cut

I Two problems at the
same time: Master, Ignore

I Master: preprocessed input
instance, does not change

I Ignore: ignore light free
activities, can change

I Each problem is tackled
with MIP, MNS, Max-Cut

I Algorithms run in parallel
and talk to a common
solution pool

I Further heuristic: Solve LP
for fixed integer variables

I Initial solution: SAT solver

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 11 / 26

§2 Solving PESP

Concurrent Solver Architecture

Final

Problem

Master

Problem

Ignore

Problem

PESP instance

Exact

preprocessing

Heuristic

preprocessing

PESP solution

Master

MIP

Master

Solution Pool

Ignore

MIP

Ignore

Solution Pool

Expand & Shrink

Further Heuristics

Master

MNS

Final

MIP

Ignore

MNS

Concurrent phase

Ignore

Max-Cut

Master

Max-Cut

I Two problems at the
same time: Master, Ignore

I Master: preprocessed input
instance, does not change

I Ignore: ignore light free
activities, can change

I Each problem is tackled
with MIP, MNS, Max-Cut

I Algorithms run in parallel
and talk to a common
solution pool

I Further heuristic: Solve LP
for fixed integer variables

I Initial solution: SAT solver

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 11 / 26

§2 Solving PESP

Concurrent Solver Architecture

Final

Problem

Master

Problem

Ignore

Problem

PESP instance

Exact

preprocessing

Heuristic

preprocessing

PESP solution

Master

MIP

Master

Solution Pool

Ignore

MIP

Ignore

Solution Pool

Expand & Shrink

Further Heuristics

Master

MNS

Final

MIP

Ignore

MNS

Concurrent phase

Ignore

Max-Cut

Master

Max-Cut

I Two problems at the
same time: Master, Ignore

I Master: preprocessed input
instance, does not change

I Ignore: ignore light free
activities, can change

I Each problem is tackled
with MIP, MNS, Max-Cut

I Algorithms run in parallel
and talk to a common
solution pool

I Further heuristic: Solve LP
for fixed integer variables

I Initial solution: SAT solver

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 11 / 26

§2 Solving PESP

Concurrent Solver Architecture

Final

Problem

Master

Problem

Ignore

Problem

PESP instance

Exact

preprocessing

Heuristic

preprocessing

PESP solution

Master

MIP

Master

Solution Pool

Ignore

MIP

Ignore

Solution Pool

Expand & Shrink

Further Heuristics

Master

MNS

Final

MIP

Ignore

MNS

Concurrent phase

Ignore

Max-Cut

Master

Max-Cut

I Two problems at the
same time: Master, Ignore

I Master: preprocessed input
instance, does not change

I Ignore: ignore light free
activities, can change

I Each problem is tackled
with MIP, MNS, Max-Cut

I Algorithms run in parallel
and talk to a common
solution pool

I Further heuristic: Solve LP
for fixed integer variables

I Initial solution: SAT solver

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 11 / 26

§2 Solving PESP

Concurrent Solver Architecture

Final

Problem

Master

Problem

Ignore

Problem

PESP instance

Exact

preprocessing

Heuristic

preprocessing

PESP solution

Master

MIP

Master

Solution Pool

Ignore

MIP

Ignore

Solution Pool

Expand & Shrink

Further Heuristics

Master

MNS

Final

MIP

Ignore

MNS

Concurrent phase

Ignore

Max-Cut

Master

Max-Cut

I Two problems at the
same time: Master, Ignore

I Master: preprocessed input
instance, does not change

I Ignore: ignore light free
activities, can change

I Each problem is tackled
with MIP, MNS, Max-Cut

I Algorithms run in parallel
and talk to a common
solution pool

I Further heuristic: Solve LP
for fixed integer variables

I Initial solution: SAT solver

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 11 / 26

§2 Solving PESP

Concurrent Solver Architecture

Final

Problem

Master

Problem

Ignore

Problem

PESP instance

Exact

preprocessing

Heuristic

preprocessing

PESP solution

Master

MIP

Master

Solution Pool

Ignore

MIP

Ignore

Solution Pool

Expand & Shrink

Further Heuristics

Master

MNS

Final

MIP

Ignore

MNS

Concurrent phase

Ignore

Max-Cut

Master

Max-Cut

I Two problems at the
same time: Master, Ignore

I Master: preprocessed input
instance, does not change

I Ignore: ignore light free
activities, can change

I Each problem is tackled
with MIP, MNS, Max-Cut

I Algorithms run in parallel
and talk to a common
solution pool

I Further heuristic: Solve LP
for fixed integer variables

I Initial solution: SAT solver

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 11 / 26

§2 Solving PESP

Concurrent Solver Architecture

Final

Problem

Master

Problem

Ignore

Problem

PESP instance

Exact

preprocessing

Heuristic

preprocessing

PESP solution

Master

MIP

Master

Solution Pool

Ignore

MIP

Ignore

Solution Pool

Expand & Shrink

Further Heuristics

Master

MNS

Final

MIP

Ignore

MNS

Concurrent phase

Ignore

Max-Cut

Master

Max-Cut

I Two problems at the
same time: Master, Ignore

I Master: preprocessed input
instance, does not change

I Ignore: ignore light free
activities, can change

I Each problem is tackled
with MIP, MNS, Max-Cut

I Algorithms run in parallel
and talk to a common
solution pool

I Further heuristic: Solve LP
for fixed integer variables

I Initial solution: SAT solver

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 11 / 26

§2 Solving PESP

Concurrent Solver Features

MIP Features

I Solver interface: SCIP, CPLEX

I Model: incidence matrix, cycle matrix, (change-)cycle inequalities,
fundamental or minimum undirected cycle basis

I Callbacks: heuristic (change-)cycle separator, SAT propagator

MNS Features

I modulo network simplex implementation with quality-first pivot rule

I single-node and multi-node cuts

I tabu search

More Features

I maximally improving delay cuts using SCIP as MIP solver

I SAT and MaxSAT strategies

I work in progress: divide and conquer

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 12 / 26

§2 Solving PESP

Concurrent Solver Features

MIP Features
I Solver interface: SCIP, CPLEX

I Model: incidence matrix, cycle matrix, (change-)cycle inequalities,
fundamental or minimum undirected cycle basis

I Callbacks: heuristic (change-)cycle separator, SAT propagator

MNS Features

I modulo network simplex implementation with quality-first pivot rule

I single-node and multi-node cuts

I tabu search

More Features

I maximally improving delay cuts using SCIP as MIP solver

I SAT and MaxSAT strategies

I work in progress: divide and conquer

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 12 / 26

§2 Solving PESP

Concurrent Solver Features

MIP Features
I Solver interface: SCIP, CPLEX

I Model: incidence matrix, cycle matrix, (change-)cycle inequalities,
fundamental or minimum undirected cycle basis

I Callbacks: heuristic (change-)cycle separator, SAT propagator

MNS Features

I modulo network simplex implementation with quality-first pivot rule

I single-node and multi-node cuts

I tabu search

More Features

I maximally improving delay cuts using SCIP as MIP solver

I SAT and MaxSAT strategies

I work in progress: divide and conquer

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 12 / 26

§2 Solving PESP

Concurrent Solver Features

MIP Features
I Solver interface: SCIP, CPLEX

I Model: incidence matrix, cycle matrix, (change-)cycle inequalities,
fundamental or minimum undirected cycle basis

I Callbacks: heuristic (change-)cycle separator, SAT propagator

MNS Features

I modulo network simplex implementation with quality-first pivot rule

I single-node and multi-node cuts

I tabu search

More Features

I maximally improving delay cuts using SCIP as MIP solver

I SAT and MaxSAT strategies

I work in progress: divide and conquer

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 12 / 26

§2 Solving PESP

Concurrent Solver Features

MIP Features
I Solver interface: SCIP, CPLEX

I Model: incidence matrix, cycle matrix, (change-)cycle inequalities,
fundamental or minimum undirected cycle basis

I Callbacks: heuristic (change-)cycle separator, SAT propagator

MNS Features

I modulo network simplex implementation with quality-first pivot rule

I single-node and multi-node cuts

I tabu search

More Features

I maximally improving delay cuts using SCIP as MIP solver

I SAT and MaxSAT strategies

I work in progress: divide and conquer

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 12 / 26

§2 Solving PESP

Concurrent Solver Features

MIP Features
I Solver interface: SCIP, CPLEX

I Model: incidence matrix, cycle matrix, (change-)cycle inequalities,
fundamental or minimum undirected cycle basis

I Callbacks: heuristic (change-)cycle separator, SAT propagator

MNS Features
I modulo network simplex implementation with quality-first pivot rule

I single-node and multi-node cuts

I tabu search

More Features

I maximally improving delay cuts using SCIP as MIP solver

I SAT and MaxSAT strategies

I work in progress: divide and conquer

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 12 / 26

§2 Solving PESP

Concurrent Solver Features

MIP Features
I Solver interface: SCIP, CPLEX

I Model: incidence matrix, cycle matrix, (change-)cycle inequalities,
fundamental or minimum undirected cycle basis

I Callbacks: heuristic (change-)cycle separator, SAT propagator

MNS Features
I modulo network simplex implementation with quality-first pivot rule

I single-node and multi-node cuts

I tabu search

More Features

I maximally improving delay cuts using SCIP as MIP solver

I SAT and MaxSAT strategies

I work in progress: divide and conquer

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 12 / 26

§2 Solving PESP

Concurrent Solver Features

MIP Features
I Solver interface: SCIP, CPLEX

I Model: incidence matrix, cycle matrix, (change-)cycle inequalities,
fundamental or minimum undirected cycle basis

I Callbacks: heuristic (change-)cycle separator, SAT propagator

MNS Features
I modulo network simplex implementation with quality-first pivot rule

I single-node and multi-node cuts

I tabu search

More Features

I maximally improving delay cuts using SCIP as MIP solver

I SAT and MaxSAT strategies

I work in progress: divide and conquer

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 12 / 26

§2 Solving PESP

Concurrent Solver Features

MIP Features
I Solver interface: SCIP, CPLEX

I Model: incidence matrix, cycle matrix, (change-)cycle inequalities,
fundamental or minimum undirected cycle basis

I Callbacks: heuristic (change-)cycle separator, SAT propagator

MNS Features
I modulo network simplex implementation with quality-first pivot rule

I single-node and multi-node cuts

I tabu search

More Features

I maximally improving delay cuts using SCIP as MIP solver

I SAT and MaxSAT strategies

I work in progress: divide and conquer

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 12 / 26

§2 Solving PESP

Concurrent Solver Features

MIP Features
I Solver interface: SCIP, CPLEX

I Model: incidence matrix, cycle matrix, (change-)cycle inequalities,
fundamental or minimum undirected cycle basis

I Callbacks: heuristic (change-)cycle separator, SAT propagator

MNS Features
I modulo network simplex implementation with quality-first pivot rule

I single-node and multi-node cuts

I tabu search

More Features
I maximally improving delay cuts using SCIP as MIP solver

I SAT and MaxSAT strategies

I work in progress: divide and conquer

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 12 / 26

§2 Solving PESP

Concurrent Solver Features

MIP Features
I Solver interface: SCIP, CPLEX

I Model: incidence matrix, cycle matrix, (change-)cycle inequalities,
fundamental or minimum undirected cycle basis

I Callbacks: heuristic (change-)cycle separator, SAT propagator

MNS Features
I modulo network simplex implementation with quality-first pivot rule

I single-node and multi-node cuts

I tabu search

More Features
I maximally improving delay cuts using SCIP as MIP solver

I SAT and MaxSAT strategies

I work in progress: divide and conquer

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 12 / 26

§2 Solving PESP

Concurrent Solver Features

MIP Features
I Solver interface: SCIP, CPLEX

I Model: incidence matrix, cycle matrix, (change-)cycle inequalities,
fundamental or minimum undirected cycle basis

I Callbacks: heuristic (change-)cycle separator, SAT propagator

MNS Features
I modulo network simplex implementation with quality-first pivot rule

I single-node and multi-node cuts

I tabu search

More Features
I maximally improving delay cuts using SCIP as MIP solver

I SAT and MaxSAT strategies

I work in progress: divide and conquer
Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 12 / 26

§2 Solving PESP

Maximum Cut Heuristic

Delay Cuts

A delay cut is a pair (S , d) consisting of a subset S of the events and a
shift d ∈ {1, . . . ,T − 1}.

Improving Delay Cuts

If π is a periodic timetable, then a delay cut (S , d) produces a new
timetable π(S ,d) by setting

π
(S,d)
i :=

{
(πi + d) mod T if i ∈ S ,

πi otherwise.

Caveat: This timetable might violate some bounds.

Theorem (−, 2019)

For fixed d, a maximally improving feasible delay cut (S , d) can be found
by solving a maximum cut problem with positive and negative weights.

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 13 / 26

§2 Solving PESP

Maximum Cut Heuristic

Delay Cuts

A delay cut is a pair (S , d) consisting of a subset S of the events and a
shift d ∈ {1, . . . ,T − 1}.

Improving Delay Cuts

If π is a periodic timetable, then a delay cut (S , d) produces a new
timetable π(S ,d) by setting

π
(S,d)
i :=

{
(πi + d) mod T if i ∈ S ,

πi otherwise.

Caveat: This timetable might violate some bounds.

Theorem (−, 2019)

For fixed d, a maximally improving feasible delay cut (S , d) can be found
by solving a maximum cut problem with positive and negative weights.

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 13 / 26

§2 Solving PESP

Maximum Cut Heuristic

Delay Cuts

A delay cut is a pair (S , d) consisting of a subset S of the events and a
shift d ∈ {1, . . . ,T − 1}.

Improving Delay Cuts

If π is a periodic timetable, then a delay cut (S , d) produces a new
timetable π(S ,d) by setting

π
(S,d)
i :=

{
(πi + d) mod T if i ∈ S ,

πi otherwise.

Caveat: This timetable might violate some bounds.

Theorem (−, 2019)

For fixed d, a maximally improving feasible delay cut (S , d) can be found
by solving a maximum cut problem with positive and negative weights.

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 13 / 26

§2 Solving PESP

Escaping Local Optima

Examples of Delay Cuts

I Modulo network simplex loop (Nachtigall/Opitz, 1998):
An exchange move of the modulo network simplex is a delay cut
corresponding to the fundamental cut of a spanning tree arc. The
delay depends on the co-tree arc.

I Single-node cuts (Nachtigall/Opitz, 1998): Delay cuts with |S | = 1.

I Waiting edge cuts (Goerigk/Schöbel, 2012):
Delay cuts with |S | = 2, the vertices of S are connected by an edge
with small span u − `.

I Multi-node cuts (Goerigk/Schöbel, 2012):
Delay cuts obtained by a greedy procedure.

Corollary

Delay cuts are “more global”: If a periodic timetable cannot be improved
by a delay cut, then it cannot be improved by any the above strategies.

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 14 / 26

§2 Solving PESP

Escaping Local Optima
Examples of Delay Cuts
I Modulo network simplex loop (Nachtigall/Opitz, 1998):

An exchange move of the modulo network simplex is a delay cut
corresponding to the fundamental cut of a spanning tree arc. The
delay depends on the co-tree arc.

0 7 9 5

8429
+4

I Single-node cuts (Nachtigall/Opitz, 1998): Delay cuts with |S | = 1.

I Waiting edge cuts (Goerigk/Schöbel, 2012):
Delay cuts with |S | = 2, the vertices of S are connected by an edge
with small span u − `.

I Multi-node cuts (Goerigk/Schöbel, 2012):
Delay cuts obtained by a greedy procedure.

Corollary

Delay cuts are “more global”: If a periodic timetable cannot be improved
by a delay cut, then it cannot be improved by any the above strategies.

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 14 / 26

§2 Solving PESP

Escaping Local Optima

Examples of Delay Cuts
I Modulo network simplex loop (Nachtigall/Opitz, 1998):

An exchange move of the modulo network simplex is a delay cut
corresponding to the fundamental cut of a spanning tree arc. The
delay depends on the co-tree arc.

I Single-node cuts (Nachtigall/Opitz, 1998): Delay cuts with |S | = 1.

I Waiting edge cuts (Goerigk/Schöbel, 2012):
Delay cuts with |S | = 2, the vertices of S are connected by an edge
with small span u − `.

I Multi-node cuts (Goerigk/Schöbel, 2012):
Delay cuts obtained by a greedy procedure.

Corollary

Delay cuts are “more global”: If a periodic timetable cannot be improved
by a delay cut, then it cannot be improved by any the above strategies.

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 14 / 26

§2 Solving PESP

Escaping Local Optima

Examples of Delay Cuts
I Modulo network simplex loop (Nachtigall/Opitz, 1998):

An exchange move of the modulo network simplex is a delay cut
corresponding to the fundamental cut of a spanning tree arc. The
delay depends on the co-tree arc.

I Single-node cuts (Nachtigall/Opitz, 1998): Delay cuts with |S | = 1.

I Waiting edge cuts (Goerigk/Schöbel, 2012):
Delay cuts with |S | = 2, the vertices of S are connected by an edge
with small span u − `.

I Multi-node cuts (Goerigk/Schöbel, 2012):
Delay cuts obtained by a greedy procedure.

Corollary

Delay cuts are “more global”: If a periodic timetable cannot be improved
by a delay cut, then it cannot be improved by any the above strategies.

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 14 / 26

§2 Solving PESP

Escaping Local Optima

Examples of Delay Cuts
I Modulo network simplex loop (Nachtigall/Opitz, 1998):

An exchange move of the modulo network simplex is a delay cut
corresponding to the fundamental cut of a spanning tree arc. The
delay depends on the co-tree arc.

I Single-node cuts (Nachtigall/Opitz, 1998): Delay cuts with |S | = 1.

I Waiting edge cuts (Goerigk/Schöbel, 2012):
Delay cuts with |S | = 2, the vertices of S are connected by an edge
with small span u − `.

I Multi-node cuts (Goerigk/Schöbel, 2012):
Delay cuts obtained by a greedy procedure.

Corollary

Delay cuts are “more global”: If a periodic timetable cannot be improved
by a delay cut, then it cannot be improved by any the above strategies.

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 14 / 26

§2 Solving PESP

Escaping Local Optima

Examples of Delay Cuts
I Modulo network simplex loop (Nachtigall/Opitz, 1998):

An exchange move of the modulo network simplex is a delay cut
corresponding to the fundamental cut of a spanning tree arc. The
delay depends on the co-tree arc.

I Single-node cuts (Nachtigall/Opitz, 1998): Delay cuts with |S | = 1.

I Waiting edge cuts (Goerigk/Schöbel, 2012):
Delay cuts with |S | = 2, the vertices of S are connected by an edge
with small span u − `.

I Multi-node cuts (Goerigk/Schöbel, 2012):
Delay cuts obtained by a greedy procedure.

Corollary

Delay cuts are “more global”: If a periodic timetable cannot be improved
by a delay cut, then it cannot be improved by any the above strategies.

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 14 / 26

§3

Benchmarks

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 15 / 26

§3 Benchmarks

Hard PESP Instances

PESPlib

I num.math.uni-goettingen.de/~m.goerigk/pesplib

I est. 2012 by Goerigk

I 16 railway instances, 4 bus instances, period time T = 60

I cyclomatic number µ from 2 722 to 9 371

I no instance solved to proven optimality

I biggest instance is part of MIPLIB 2017

Short History: Computing Power vs Algorithmic Power

I 2004: U-Bahn Berlin (µ = 184), 0.5 s, 4% gap, CPLEX + cycle basis

I 2008: timtab2 (µ = 294), 22 h, optimal, CPLEX + user cuts

I 2016: timtab2 (µ = 294), 1.78 h, optimal, ParaXpress @ 6 144 cores

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 16 / 26

num.math.uni-goettingen.de/~m.goerigk/pesplib

§3 Benchmarks

Hard PESP Instances

PESPlib

I num.math.uni-goettingen.de/~m.goerigk/pesplib

I est. 2012 by Goerigk

I 16 railway instances, 4 bus instances, period time T = 60

I cyclomatic number µ from 2 722 to 9 371

I no instance solved to proven optimality

I biggest instance is part of MIPLIB 2017

Short History: Computing Power vs Algorithmic Power

I 2004: U-Bahn Berlin (µ = 184), 0.5 s, 4% gap, CPLEX + cycle basis

I 2008: timtab2 (µ = 294), 22 h, optimal, CPLEX + user cuts

I 2016: timtab2 (µ = 294), 1.78 h, optimal, ParaXpress @ 6 144 cores

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 16 / 26

num.math.uni-goettingen.de/~m.goerigk/pesplib

§3 Benchmarks

Hard PESP Instances

PESPlib

I num.math.uni-goettingen.de/~m.goerigk/pesplib

I est. 2012 by Goerigk

I 16 railway instances, 4 bus instances, period time T = 60

I cyclomatic number µ from 2 722 to 9 371

I no instance solved to proven optimality

I biggest instance is part of MIPLIB 2017

Short History: Computing Power vs Algorithmic Power

I 2004: U-Bahn Berlin (µ = 184), 0.5 s, 4% gap, CPLEX + cycle basis

I 2008: timtab2 (µ = 294), 22 h, optimal, CPLEX + user cuts

I 2016: timtab2 (µ = 294), 1.78 h, optimal, ParaXpress @ 6 144 cores

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 16 / 26

num.math.uni-goettingen.de/~m.goerigk/pesplib

§3 Benchmarks

Hard PESP Instances

PESPlib

I num.math.uni-goettingen.de/~m.goerigk/pesplib

I est. 2012 by Goerigk

I 16 railway instances, 4 bus instances, period time T = 60

I cyclomatic number µ from 2 722 to 9 371

I no instance solved to proven optimality

I biggest instance is part of MIPLIB 2017

Short History: Computing Power vs Algorithmic Power

I 2004: U-Bahn Berlin (µ = 184), 0.5 s, 4% gap, CPLEX + cycle basis

I 2008: timtab2 (µ = 294), 22 h, optimal, CPLEX + user cuts

I 2016: timtab2 (µ = 294), 1.78 h, optimal, ParaXpress @ 6 144 cores

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 16 / 26

num.math.uni-goettingen.de/~m.goerigk/pesplib

§3 Benchmarks

Hard PESP Instances

PESPlib

I num.math.uni-goettingen.de/~m.goerigk/pesplib

I est. 2012 by Goerigk

I 16 railway instances, 4 bus instances, period time T = 60

I cyclomatic number µ from 2 722 to 9 371

I no instance solved to proven optimality

I biggest instance is part of MIPLIB 2017

Short History: Computing Power vs Algorithmic Power

I 2004: U-Bahn Berlin (µ = 184), 0.5 s, 4% gap, CPLEX + cycle basis

I 2008: timtab2 (µ = 294), 22 h, optimal, CPLEX + user cuts

I 2016: timtab2 (µ = 294), 1.78 h, optimal, ParaXpress @ 6 144 cores

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 16 / 26

num.math.uni-goettingen.de/~m.goerigk/pesplib

§3 Benchmarks

Hard PESP Instances

PESPlib

I num.math.uni-goettingen.de/~m.goerigk/pesplib

I est. 2012 by Goerigk

I 16 railway instances, 4 bus instances, period time T = 60

I cyclomatic number µ from 2 722 to 9 371

I no instance solved to proven optimality

I biggest instance is part of MIPLIB 2017

Short History: Computing Power vs Algorithmic Power

I 2004: U-Bahn Berlin (µ = 184), 0.5 s, 4% gap, CPLEX + cycle basis

I 2008: timtab2 (µ = 294), 22 h, optimal, CPLEX + user cuts

I 2016: timtab2 (µ = 294), 1.78 h, optimal, ParaXpress @ 6 144 cores

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 16 / 26

num.math.uni-goettingen.de/~m.goerigk/pesplib

§3 Benchmarks

Hard PESP Instances

PESPlib

I num.math.uni-goettingen.de/~m.goerigk/pesplib

I est. 2012 by Goerigk

I 16 railway instances, 4 bus instances, period time T = 60

I cyclomatic number µ from 2 722 to 9 371

I no instance solved to proven optimality

I biggest instance is part of MIPLIB 2017

Short History: Computing Power vs Algorithmic Power

I 2004: U-Bahn Berlin (µ = 184), 0.5 s, 4% gap, CPLEX + cycle basis

I 2008: timtab2 (µ = 294), 22 h, optimal, CPLEX + user cuts

I 2016: timtab2 (µ = 294), 1.78 h, optimal, ParaXpress @ 6 144 cores

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 16 / 26

num.math.uni-goettingen.de/~m.goerigk/pesplib

§3 Benchmarks

Hard PESP Instances

PESPlib

I num.math.uni-goettingen.de/~m.goerigk/pesplib

I est. 2012 by Goerigk

I 16 railway instances, 4 bus instances, period time T = 60

I cyclomatic number µ from 2 722 to 9 371

I no instance solved to proven optimality

I biggest instance is part of MIPLIB 2017

Short History: Computing Power vs Algorithmic Power

I 2004: U-Bahn Berlin (µ = 184), 0.5 s, 4% gap, CPLEX + cycle basis

I 2008: timtab2 (µ = 294), 22 h, optimal, CPLEX + user cuts

I 2016: timtab2 (µ = 294), 1.78 h, optimal, ParaXpress @ 6 144 cores

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 16 / 26

num.math.uni-goettingen.de/~m.goerigk/pesplib

§3 Benchmarks

Hard PESP Instances

PESPlib

I num.math.uni-goettingen.de/~m.goerigk/pesplib

I est. 2012 by Goerigk

I 16 railway instances, 4 bus instances, period time T = 60

I cyclomatic number µ from 2 722 to 9 371

I no instance solved to proven optimality

I biggest instance is part of MIPLIB 2017

Short History: Computing Power vs Algorithmic Power

I 2004: U-Bahn Berlin (µ = 184), 0.5 s, 4% gap, CPLEX + cycle basis

I 2008: timtab2 (µ = 294), 22 h, optimal, CPLEX + user cuts

I 2016: timtab2 (µ = 294), 1.78 h, optimal, ParaXpress @ 6 144 cores

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 16 / 26

num.math.uni-goettingen.de/~m.goerigk/pesplib

§3 Benchmarks

PESPlib: Difficulty

Log width: log10 of combinations of values for the integer variables

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 17 / 26

§3 Benchmarks

PESPlib: Preprocessing

Exact preprocessing: remove bridges & isolated events, contract fixed arcs
Heuristic preprocessing: exact preprocessing, contract events of degree 2

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 18 / 26

§3 Benchmarks

PESPlib: Objective Value Improvement by Algorithm

Round 1: 20 minutes
best of 10

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 19 / 26

§3 Benchmarks

PESPlib: Objective Value Improvement by Algorithm

Round 2: 60 minutes
best of 10

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 20 / 26

§3 Benchmarks

PESPlib: Objective Value Improvement by Algorithm

Round 3: 4 hours
best of 1

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 21 / 26

§3 Benchmarks

PESPlib: Objective Value Improvement by Algorithm

Round 4: 8 hours
best of 1, no ignore problem

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 22 / 26

§3 Benchmarks

PESPlib: Primal Results
Exp. 1 Exp. 2 Exp. 3 Exp. 4

Instance SAT start 20min 1 h 4 h 8 h Improvement
R1L1 74 234 870 30 861 021 30 501 068 30 493 800 30 463 638 1.03%
R1L2 72 731 210 30 891 284 30 516 991 30 516 991 30 507 180 3.71%
R1L3 71 682 438 30 348 596 29 335 021 29 319 593 29 319 593 3.26%
R1L4 67 395 169 27 635 070 26 738 840 26 690 573 26 516 727 2.96%
R2L1 97 230 766 42 863 646 42 598 548 42 463 738 42 422 038 0.19%
R2L2 95 898 935 42 024 414 41 149 768 40 876 575 40 642 186 2.15%
R2L3 93 800 082 39 054 513 38 924 083 38 881 659 38 558 371 3.47%
R2L4 84 605 216 33 256 602 32 707 981 32 548 415 32 483 894 1.75%
R3L1 92 939 173 44 216 552 43 521 250 43 460 397 43 271 824 2.53%
R3L2 91 336 260 45 829 180 45 442 171 45 401 718 45 220 083 1.80%
R3L3 89 741 119 42 112 858 41 103 062 41 005 379 40 849 585 4.63%
R3L4 74 142 083 34 589 170 34 018 560 33 454 773 33 335 852 3.91%
R4L1 98 276 297 50 638 727 49 970 330 49 582 677 49 426 919 4.30%
R4L2 101 135 698 50 514 805 49 379 256 49 018 380 48 764 793 1.64%
R4L3 96 629 751 46 406 365 45 656 395 45 530 113 45 493 081 0.85%
R4L4 80 446 905 40 706 349 38 884 544 38 695 188 38 381 922 1.17%
BL1 15 367 998 7 299 228 6 394 914 6 375 778 6 333 641 14.27%
BL2 16 046 736 7 378 468 6 837 447 6 819 856 6 799 331 16.51%
BL3 14 850 854 7 512 685 7 065 270 7 011 324 6 999 313 10.57%
BL4 15 618 608 7 997 783 7 330 393 6 738 582 6 562 147 10.84%

10 better 18 better 20 better 20 better
Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 23 / 26

§3 Benchmarks

PESPlib: Dual Results
Instance Dual bound PESPlib improvement Optimality gap
R1L1 19 878 200 17.64% 34.75%
R1L2 19 414 800 290.22% 36.36%
R1L3 18 786 300 189.09% 35.93%
R1L4 16 822 200 167.11% 36.56%
R2L1 25 082 000 163.82% 40.88%
R2L2 24 867 400 220.09% 38.81%
R2L3 23 152 300 181.49% 39.96%
R2L4 18 941 500 263.07% 41.69%
R3L1 25 077 800 217.16% 42.05%
R3L2 25 272 600 240.02% 44.11%
R3L3 21 642 500 226.52% 47.02%
R3L4 16 479 500 193.04% 50.57%
R4L1 27 243 900 170.03% 44.88%
R4L2 26 368 200 230.63% 45.93%
R4L3 22 701 400 203.62% 50.10%
R4L4 15 840 600 207.75% 58.73%
BL1 3 668 148 148.26% 42.08%
BL2 3 943 811 127.93% 42.00%
BL3 3 571 976 196.31% 48.97%
BL4 3 131 491 211.81% 52.28%

8 h, 6 threads

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 24 / 26

§3 Benchmarks

PESPlib: Conclusions

I Half of the instances could be improved within only 20 minutes.

I Concurrency pays off: The speed-up compared to the sequential
method of Goerigk/Liebchen is bigger than the number of threads.

I Solving to proven optimality currently seems to be out of reach:
Given the relatively small primal improvements, there is a lot to do on
the dual side.

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 25 / 26

§3 Benchmarks

PESPlib: Conclusions

I Half of the instances could be improved within only 20 minutes.

I Concurrency pays off: The speed-up compared to the sequential
method of Goerigk/Liebchen is bigger than the number of threads.

I Solving to proven optimality currently seems to be out of reach:
Given the relatively small primal improvements, there is a lot to do on
the dual side.

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 25 / 26

§3 Benchmarks

PESPlib: Conclusions

I Half of the instances could be improved within only 20 minutes.

I Concurrency pays off: The speed-up compared to the sequential
method of Goerigk/Liebchen is bigger than the number of threads.

I Solving to proven optimality currently seems to be out of reach:
Given the relatively small primal improvements, there is a lot to do on
the dual side.

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 25 / 26

A Concurrent Approach to the
Periodic Event Scheduling Problem

Ralf Borndörfer, Niels Lindner, Sarah Roth

Zuse Institute Berlin

RailNorrköping 2019

June 18, 2019

Niels Lindner: A Concurrent Approach to PESP RailNorrköping 2019 26 / 26

	Introduction
	Solving PESP
	Benchmarks

