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Main Topics

Idea

I Many combinatorial optimization problems are formulated on graphs.

I Real-world applications typically lead to NP-hard optimization
problems on large graphs.

I Global solution algorithms scale badly.

I Idea: Divide and conquer!

Graph Decomposition Toolbox

I Graph Partitioning / Graph Bisection

I Tree Decompositions

I Branch Decompositions
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Minimum Cuts

Let G be an undirected graph with edge weights w : E (G )→ R≥0.

Minimum Cut
Find a non-empty proper subset of vertices S ( V (G ) such that the weight
of the edges connecting S with V (G ) \ S is minimum, i.e., minimize

w(δ(S)) =
∑

{u,v}∈E(G):u∈S ,v /∈S

w(uv).

A minimum cut δ(S) can be found in polynomial time.

Example (w ≡ 1)
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Minimum Cuts

Let G be an undirected graph with edge weights w : E (G )→ R≥0.

Minimum Cut
Find a non-empty proper subset of vertices S ( V (G ) such that the weight
of the edges connecting S with V (G ) \ S is minimum, i.e., minimize

w(δ(S)) =
∑

{u,v}∈E(G):u∈S ,v /∈S

w(uv).

A minimum cut δ(S) can be found in polynomial time.

Example (w ≡ 1)

Any minimum cut in the cycle graph Cn with uniform
weights has weight 2, but the size of S can be any num-
ber between 1 and n − 1.
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Graph Partitioning
Let G ,w be as before, and let α ≥ 0.

Graph Bisection / Balanced Minimum Cut

Find a non-empty proper subset of vertices S ⊆ V (G ) such that w(δ(S)) is
minimum and |V (G )|/2 ≤ |S | ≤ (1 + α) · |V (G )|/2.

Graph k-Partitioning

For k ∈ N, find a k-partition (S1, . . . ,Sk) of V (G ) such that the weight of
the edges between distinct parts is minimum and |Si | ≤ (1 + α) · |V (G )|/k
for all i ∈ {1, . . . , k}.

Theorem (Garey, Johnson, Stockmeyer, 1976)

The graph bisection problem is NP-hard for w ≡ 1 and α = 0.

Remark
Terminology: Cut vs. partition ↔ connected vs. arbitrary. If δ(S) is an
unbalanced minimum (2-)cut in a connected graph, then S is connected.
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Treewidth

Idea
Many NP-hard optimization problems are easy on trees, e.g.:

I longest path

I minimum vertex coloring / chromatic number

I maximum independent set

I periodic timetabling in public transport

Treewidth
Treewidth measures how “similar” a graph is to a tree.

Examples

1 2 3 4 5
Seminar Graph Decompositions – Introduction 5 / 9



Tree Decompositions

Informal Description

Tree decompositions define a “parsing tree” for vertices of a graph.

Interpretations of Treewidth

I minimum maximum bag size − 1 among all tree decompositions

I minimum clique size − 1 among all chordal completions

I minimum k for which the graph is a partial k-tree

Examples

1

23

4

5 6

treewidth 1

{1, 2} {2, 3} {3, 4} {4, 5} {5, 6}
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Tree Decompositions

Informal Description

Tree decompositions define a “parsing tree” for vertices of a graph.

Interpretations of Treewidth

I minimum maximum bag size − 1 among all tree decompositions

I minimum clique size − 1 among all chordal completions

I minimum k for which the graph is a partial k-tree

Examples

1

23

4

5 6

treewidth 2

{1, 2, 3} {1, 3, 4} {1, 4, 5} {1, 5, 6}
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Tree Decompositions

Informal Description

Tree decompositions define a “parsing tree” for vertices of a graph.

Interpretations of Treewidth

I minimum maximum bag size − 1 among all tree decompositions

I minimum clique size − 1 among all chordal completions

I minimum k for which the graph is a partial k-tree

Examples

1

23

4

5 6

treewidth 3

{3, 4, 5} {2, 3, 5, 6} {1, 2, 6}
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Tree Decompositions

Informal Description

Tree decompositions define a “parsing tree” for vertices of a graph.

Interpretations of Treewidth

I minimum maximum bag size − 1 among all tree decompositions

I minimum clique size − 1 among all chordal completions

I minimum k for which the graph is a partial k-tree

Examples

1

23

4

5 6

treewidth 4

{1, 2, 3, 5, 6} {2, 3, 4, 5, 6}
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Tree Decompositions

Informal Description

Tree decompositions define a “parsing tree” for vertices of a graph.

Interpretations of Treewidth

I minimum maximum bag size − 1 among all tree decompositions

I minimum clique size − 1 among all chordal completions

I minimum k for which the graph is a partial k-tree

Examples

1

23

4

5 6

treewidth 5

{1, 2, 3, 4, 5, 6}
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Branch Decompositions

Branch Decomposition

A branch decomposition of a graph G is an unrooted binary tree whose
leaves are in bijection with E (G ).

Branchwidth
Any edge of a branch decomposition tree gives a partition E (G ) = E1

.
∪ E2.

The width of such an edge is the number of vertices incident to both E1

and E2 (cardinality of vertex separator). The branchwidth of a graph is the
minimum maximum width of an edge among all branch decompositions.

Example

1

23

4

5 6

{1, 2}

{1, 6}

{2, 3}

{3, 6}
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{3, 4}

{4, 5}

{2, 5}
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Branch Decompositions

Branch Decomposition

A branch decomposition of a graph G is an unrooted binary tree whose
leaves are in bijection with E (G ).

Branchwidth
Any edge of a branch decomposition tree gives a partition E (G ) = E1

.
∪ E2.

The width of such an edge is the number of vertices incident to both E1

and E2 (cardinality of vertex separator). The branchwidth of a graph is the
minimum maximum width of an edge among all branch decompositions.

Example

1

3

4

5

2

6

{1, 2}

{1, 6}

{2, 3}

{3, 6}
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Branch Decompositions

Branch Decomposition

A branch decomposition of a graph G is an unrooted binary tree whose
leaves are in bijection with E (G ).

Branchwidth
Any edge of a branch decomposition tree gives a partition E (G ) = E1

.
∪ E2.

The width of such an edge is the number of vertices incident to both E1

and E2 (cardinality of vertex separator). The branchwidth of a graph is the
minimum maximum width of an edge among all branch decompositions.

Example

14

5

2

6

3

{1, 2}

{1, 6}

{2, 3}

{3, 6}

2

2

2

2

3

2

{3, 4}

{4, 5}

{2, 5}

{5, 6}
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More on Tree- and Branchwidth

More Facts

I Computing tree- and branchwidth is in general NP-hard.

I Tree- and branchwidth are within constant factors of each other:

bw ≤ tw + 1 ≤ b3/2 bwc.

Impact on Optimization

Some problems become solvable in polynomial time on graphs with fixed
tree- or branchwidth:

I minimum vertex coloring / chromatic number

I maximum independent set

I computing an optimal tree or branch decomposition

I Courcelle’s meta theorem on monadic second-order logic
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Organization

Outline
I Papers: will be sent by e-mail this week.

I Kick-off: short (5 minutes) presentation on your topic
Wednesday, November 20, 10 am, ZIB 2006 (this room)

I Summary: 5-8 pages, LaTeX, January

I Talks: 45 minutes, February

I Details and reminders will be sent in time by e-mail.

Contact
I Niels Lindner, lindner@zib.de

Website
https://kvv.imp.fu-berlin.de/x/wQ3Qsa (Whiteboard)
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