Seminar Combinatorial Optimization:
 Graph Decompositions

Niels Lindner

Introduction
October 16, 2019

Main Topics

Idea

- Many combinatorial optimization problems are formulated on graphs.
- Real-world applications typically lead to NP-hard optimization problems on large graphs.
- Global solution algorithms scale badly.
- Idea: Divide and conquer!

Graph Decomposition Toolbox

- Graph Partitioning / Graph Bisection
- Tree Decompositions
- Branch Decompositions

Minimum Cuts

Let G be an undirected graph with edge weights $w: E(G) \rightarrow \mathbb{R}_{\geq 0}$.
Minimum Cut
Find a non-empty proper subset of vertices $S \subsetneq V(G)$ such that the weight of the edges connecting S with $V(G) \backslash S$ is minimum, i.e., minimize

$$
w(\delta(S))=\sum_{\{u, v\} \in E(G): u \in S, v \notin S} w(u v) .
$$

A minimum cut $\delta(S)$ can be found in polynomial time.
Example ($w \equiv 1$)

Minimum Cuts

Let G be an undirected graph with edge weights $w: E(G) \rightarrow \mathbb{R}_{\geq 0}$.

Minimum Cut

Find a non-empty proper subset of vertices $S \subsetneq V(G)$ such that the weight of the edges connecting S with $V(G) \backslash S$ is minimum, i.e., minimize

$$
w(\delta(S))=\sum_{\{u, v\} \in E(G): u \in S, v \notin S} w(u v) .
$$

A minimum cut $\delta(S)$ can be found in polynomial time.
Example $(w \equiv 1)$

Any minimum cut in the cycle graph C_{n} with uniform weights has weight 2 , but the size of S can be any number between 1 and $n-1$.

Graph Partitioning

Let G, w be as before, and let $\alpha \geq 0$.

Graph Bisection / Balanced Minimum Cut

Find a non-empty proper subset of vertices $S \subseteq V(G)$ such that $w(\delta(S))$ is minimum and $|V(G)| / 2 \leq|S| \leq(1+\alpha) \cdot|V(G)| / 2$.

Graph k-Partitioning
For $k \in \mathbb{N}$, find a k-partition $\left(S_{1}, \ldots, S_{k}\right)$ of $V(G)$ such that the weight of the edges between distinct parts is minimum and $\left|S_{i}\right| \leq(1+\alpha) \cdot|V(G)| / k$ for all $i \in\{1, \ldots, k\}$.

Theorem (Garey, Johnson, Stockmeyer, 1976)
The graph bisection problem is NP-hard for $w \equiv 1$ and $\alpha=0$.

Remark

Terminology: Cut vs. partition \leftrightarrow connected vs. arbitrary. If $\delta(S)$ is an unbalanced minimum (2-)cut in a connected graph, then S is connected.

Treewidth

Idea
Many NP-hard optimization problems are easy on trees, e.g.:

- longest path
- minimum vertex coloring / chromatic number
- maximum independent set
- periodic timetabling in public transport

Treewidth

Treewidth measures how "similar" a graph is to a tree.

Examples

Tree Decompositions

Informal Description

Tree decompositions define a "parsing tree" for vertices of a graph. Interpretations of Treewidth

- minimum maximum bag size - 1 among all tree decompositions
- minimum clique size - 1 among all chordal completions
- minimum k for which the graph is a partial k-tree

Examples

$$
\{1,2\}-\{2,3\}-\{3,4\}-\{4,5\}-\{5,6\}
$$

Tree Decompositions

Informal Description

Tree decompositions define a "parsing tree" for vertices of a graph. Interpretations of Treewidth

- minimum maximum bag size - 1 among all tree decompositions
- minimum clique size - 1 among all chordal completions
- minimum k for which the graph is a partial k-tree

Examples

$$
\{1,2,3\}-\{1,3,4\}-\{1,4,5\}-\{1,5,6\}
$$

treewidth 2

Tree Decompositions

Informal Description

Tree decompositions define a "parsing tree" for vertices of a graph. Interpretations of Treewidth

- minimum maximum bag size - 1 among all tree decompositions
- minimum clique size - 1 among all chordal completions
- minimum k for which the graph is a partial k-tree

Examples

$$
\{3,4,5\} \longrightarrow\{2,3,5,6\} \longrightarrow\{1,2,6\}
$$

treewidth 3

Tree Decompositions

Informal Description

Tree decompositions define a "parsing tree" for vertices of a graph. Interpretations of Treewidth

- minimum maximum bag size -1 among all tree decompositions
- minimum clique size - 1 among all chordal completions
- minimum k for which the graph is a partial k-tree

Examples

$$
\{1,2,3,5,6\} \longrightarrow\{2,3,4,5,6\}
$$

treewidth 4

Tree Decompositions

Informal Description

Tree decompositions define a "parsing tree" for vertices of a graph. Interpretations of Treewidth

- minimum maximum bag size - 1 among all tree decompositions
- minimum clique size - 1 among all chordal completions
- minimum k for which the graph is a partial k-tree

Examples

$$
\{1,2,3,4,5,6\}
$$

treewidth 5

Branch Decompositions

Branch Decomposition

A branch decomposition of a graph G is an unrooted binary tree whose leaves are in bijection with $E(G)$.

Branchwidth

Any edge of a branch decomposition tree gives a partition $E(G)=E_{1} \dot{\cup} E_{2}$. The width of such an edge is the number of vertices incident to both E_{1} and E_{2} (cardinality of vertex separator). The branchwidth of a graph is the minimum maximum width of an edge among all branch decompositions.

Example

Branch Decompositions

Branch Decomposition

A branch decomposition of a graph G is an unrooted binary tree whose leaves are in bijection with $E(G)$.

Branchwidth

Any edge of a branch decomposition tree gives a partition $E(G)=E_{1} \dot{\cup} E_{2}$. The width of such an edge is the number of vertices incident to both E_{1} and E_{2} (cardinality of vertex separator). The branchwidth of a graph is the minimum maximum width of an edge among all branch decompositions.

Example

Branch Decompositions

Branch Decomposition

A branch decomposition of a graph G is an unrooted binary tree whose leaves are in bijection with $E(G)$.

Branchwidth

Any edge of a branch decomposition tree gives a partition $E(G)=E_{1} \dot{\cup} E_{2}$. The width of such an edge is the number of vertices incident to both E_{1} and E_{2} (cardinality of vertex separator). The branchwidth of a graph is the minimum maximum width of an edge among all branch decompositions.

Example

More on Tree- and Branchwidth

More Facts

- Computing tree- and branchwidth is in general NP-hard.
- Tree- and branchwidth are within constant factors of each other:

$$
b w \leq t w+1 \leq\lfloor 3 / 2 b w\rfloor .
$$

Impact on Optimization

Some problems become solvable in polynomial time on graphs with fixed tree- or branchwidth:

- minimum vertex coloring / chromatic number
- maximum independent set
- computing an optimal tree or branch decomposition
- Courcelle's meta theorem on monadic second-order logic

Organization

Outline

- Papers: will be sent by e-mail this week.
- Kick-off: short (5 minutes) presentation on your topic Wednesday, November 20, 10 am, ZIB 2006 (this room)
- Summary: 5-8 pages, LaTeX, January
- Talks: 45 minutes, February
- Details and reminders will be sent in time by e-mail.

Contact

- Niels Lindner, lindner@zib.de

Website
https://kvv.imp.fu-berlin.de/x/wQ3Qsa (Whiteboard)

