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Cohomology of algebraic varieties 1/15

Let X be an algebraic variety over C.

Cohomology theories

singular cohomology H•sing(X an,C)
analytic de Rham cohomology H•dR(X an)
algebraic de Rham cohomology H•dR(X )
étale cohomology H•ét(X ,Q`)

Theorem (Artin, Grothendieck, Hartshorne, de Rham)
All these theories give the same Betti numbers.

Remark (Lefschetz principle + base change)
This generalizes to varieties over arbitrary characteristic 0 fields.
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Cohomology of algebraic varieties: Examples 2/15

Example (Betti numbers of affine space)

hi (An) =
{
1 if i = 0,
0 otherwise.

Example (Betti numbers of projective space)

hi (Pn) =
{
1 if i ∈ {0, 2, 4, . . . , 2n},
0 otherwise.

Example (Dimension vanishing)

hi (X ) = 0 for i < 0 and i > 2 dimX ,
hi (X ) = 0 for i > dimX if X is affine.
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Smooth projective hypersurfaces 3/15

Let K be a field of characteristic 0, n ≥ 3.
Let X = {f = 0} ⊆ Pn

K be a hypersurface of degree d over K .

Theorem (Griffiths)
If X is smooth, then:

hi (X ) = hi (Pn) if i /∈ {n − 1, 2n},
h2n(X ) = 0,

hn−1(X ) =
n−1∑
k=1

dimK
K [x0, . . . , xn]〈
∂f
∂x0
, . . . , ∂f

∂xn

〉


kd−n−1

+ nmod 2.
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Smooth projective hypersurfaces 4/15

Proof ingredients

Lefschetz hyperplane theorem: Natural isomorphisms

H i (Pn) ∼= H i (X ) for 0 ≤ i ≤ n − 2.

Poincaré duality: H i (X ) ∼= H2n−2−i (X )∨ for all i .
Gysin sequence:
Hn−1(X ) is (almost) isomorphic to Hn(Pn \ X ).
Algebraic de Rham cohomology of Pn \ X
= cohomology of Ω•K [x0,...,xn](f )

.
Explicit computations (reduction of pole order)
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Hypersurfaces with defect 5/15

Let X = {f = 0} be a singular hypersurface in Pn with singular
locus Σ. The Lefschetz hyperplane theorem holds, but Poincaré
duality might fail.

Theorem (Dimca/Greuel/Saito, Kato/Matsumoto)
hi (X ) = hi (Pn) if i ≤ n − 2 or n + 1 + dimΣ ≤ i ≤ 2n − 2.

Definition
X has defect if hi (X ) 6= hi (Pn) for some n ≤ i ≤ n + dimΣ.
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Examples (Hypersurfaces with defect)

reducible hypersurfaces, because

h2n−2(X ) = #{irreducible components of X}.

cones over smooth curves C ⊆ P2 of positive genus, as

h3(X ) = h1(C) = 2 · g(C).

threefold hypersurfaces with at most rational singularities
containing a non-Q-Cartier divisor, because

rk CH1(X ) ≤ h4(X ).
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Defect ⇒ Lots of singularities 7/15

Let X ⊆ Pn be a degree d hypersurface with singular locus Σ.

Theorem (Cheltsov)
Suppose X ⊆ P4 has at most ordinary double points as
singularities. Then

X has defect ⇒ #Σ ≥ (d − 1)2.

Theorem (−)
Suppose X ⊆ Pn, n ≥ 3, has at most isolated singularities. Then

X has defect ⇒ τ ≥ d − n + 1
n2 + n + 1 ,

where τ denotes the global Tjurina number of f .
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Defect ⇒ Lots of singularities 8/15

Proof ingredients I

X has defect is (almost) equivalent to: The natural restriction

Hn(Pn \ X )→ Hn
Σ(X )

is not surjective.
Choosing a hyperplane avoiding Σ, identify

Hn
Σ(X ) ∼= Hn(An \ (X ∩ An))/V ,

where V is the inverse image of Hn−1(X ∩ An) under the
Poincaré residue map.
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Defect ⇒ Lots of singularities 9/15

Proof ingredients II

De Rham cohomology of Pn \ X and An \ (X ∩ An) is very
explicit: Get a commutative diagram

K [x0, . . . , xn]kd−n−1
restriction−−−−−−→ K [x1, . . . , xn]

g 7→ gΩ/F k
ysurj. surj.

yh 7→ hω/f k

GrkP Hn(Pn \ X ) restriction−−−−−−→ GrkP Hn
Σ(X )

using the pole-order filtration P by forms of pole order k.
Griffiths’ reduction of the pole order (J is the Jacobian ideal):

h ∈ J ⇒ hω/f k = 0 in GrkP Hn
Σ(X ), k 6= 1.

Using the space V :
h ∈ J3 ⇒ hω/f k = 0 in Gr1P Hn

Σ(X ).
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Defect ⇒ Lots of singularities 10/15

Proof ingredients III

Commutative diagram

K [x0, . . . , xn]kd−n−1
restriction−−−−−−→ K [x1, . . . , xn]/(〈f 〉+ J3)

g 7→ gΩ/F k
ysurj. surj.

yh 7→ hω/f k

GrkP Hn(Pn \ X ) restriction−−−−−−→ GrkP Hn
Σ(X )

If X has defect, then the bottom map is not surjective for
some k ≥ 1. So the top map is not surjective for some k ≥ 1.
Commutative algebra:

dimK K [x1, . . . , xn]/(〈f 〉+ J3) ≥ d − n + 1

⇒ τ = dimK K [x1, . . . , xn]/(〈f 〉+ J) ≥ d − n + 1
n2 + n + 1 .
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Cohomology theories in positive characteristic 11/15

Let X be an algebraic variety over a field K of characteristic p > 0.

Cohomology theories

algebraic de Rham cohomology H•dR(X ),
rigid cohomology H•rig(X/Quot(W (K ))),
étale cohomology H•ét(X ,Q`), ` 6= p.

Theorem (Deligne, Katz/Messing, Kedlaya)
The two theories give the same Betti numbers for smooth
projective varieties over finite fields.



Cohomology theories in positive characteristic 11/15

Let X be an algebraic variety over a field K of characteristic p > 0.

Cohomology theories

algebraic de Rham cohomology H•dR(X ),
rigid cohomology H•rig(X/Quot(W (K ))),
étale cohomology H•ét(X ,Q`), ` 6= p.

Theorem (Deligne, Katz/Messing, Kedlaya)
The two theories give the same Betti numbers for smooth
projective varieties over finite fields.



Cohomology theories in positive characteristic 11/15

Let X be an algebraic variety over a field K of characteristic p > 0.

Cohomology theories
algebraic de Rham cohomology H•dR(X ),

rigid cohomology H•rig(X/Quot(W (K ))),
étale cohomology H•ét(X ,Q`), ` 6= p.

Theorem (Deligne, Katz/Messing, Kedlaya)
The two theories give the same Betti numbers for smooth
projective varieties over finite fields.



Cohomology theories in positive characteristic 11/15

Let X be an algebraic variety over a field K of characteristic p > 0.

Cohomology theories
algebraic de Rham cohomology H•dR(X ),

rigid cohomology H•rig(X/Quot(W (K ))),
étale cohomology H•ét(X ,Q`), ` 6= p.

Theorem (Deligne, Katz/Messing, Kedlaya)
The two theories give the same Betti numbers for smooth
projective varieties over finite fields.



Cohomology theories in positive characteristic 11/15

Let X be an algebraic variety over a field K of characteristic p > 0.

Cohomology theories
algebraic de Rham cohomology H•dR(X ),
rigid cohomology H•rig(X/Quot(W (K ))),

étale cohomology H•ét(X ,Q`), ` 6= p.

Theorem (Deligne, Katz/Messing, Kedlaya)
The two theories give the same Betti numbers for smooth
projective varieties over finite fields.



Cohomology theories in positive characteristic 11/15

Let X be an algebraic variety over a field K of characteristic p > 0.

Cohomology theories
algebraic de Rham cohomology H•dR(X ),
rigid cohomology H•rig(X/Quot(W (K ))),
étale cohomology H•ét(X ,Q`), ` 6= p.

Theorem (Deligne, Katz/Messing, Kedlaya)
The two theories give the same Betti numbers for smooth
projective varieties over finite fields.



Cohomology theories in positive characteristic 11/15

Let X be an algebraic variety over a field K of characteristic p > 0.

Cohomology theories
algebraic de Rham cohomology H•dR(X ),
rigid cohomology H•rig(X/Quot(W (K ))),
étale cohomology H•ét(X ,Q`), ` 6= p.

Theorem (Deligne, Katz/Messing, Kedlaya)
The two theories give the same Betti numbers for smooth
projective varieties over finite fields.



Cohomology theories in positive characteristic 12/15

Definition
A lift of X is a flat scheme over a mixed characteristic dvr whose
special fiber is X .

special fiber ← scheme over dvr → generic fiber
X = Xs/Fp X/Zp Xη/Qp

Theorem (Proper-smooth base change)
If X has a smooth proper lift X with generic fiber Xη, then

H i
ét(X ,Q`) ∼= H i

ét(Xη,Q`) for all i and ` 6= p.

Theorem (Baldassarri/Chiarellotto)
Let X be a smooth proper scheme over a dvr and let D be a
relative snc divisor. Then H i

rig(Xs \ Ds) ∼= H i
dR(Xη \ Dη) for all i .
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Defect in positive characteristic 13/15

Let X ⊆ Pn be a hypersurface.

Corollary
If X is smooth, then the Betti numbers agree with characteristic 0.

Definition
X has defect if hi (X ) 6= hi (Pn) for some n ≤ i ≤ 2n − 2.

Remark

If X has at most isolated singularities, then
X has defect in étale cohomology ⇔ hn(X ) 6= hn(Pn).
If X has at most isolated weighted homogeneous singularities,
X has defect in rigid cohomology ⇔ hn(X ) 6= hn(Pn).
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Defect ⇒ Lots of singularities 14/15

Let X ⊆ Pn be a hypersurface with at most isolated singularities.

Corollary
If X lifts to a hypersurface in Pn with defect, then

τ ≥ d − n + 1
n2 + n + 1 .

Question
Can one always lift defect?

Example
Let S ⊆ P4 be a non-liftable surface defined over Fq (Vakil). Let
X be a hypersurface containing S. Then S cannot be a Q-Cartier
divisor on X . ⇒ X has defect.
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Defect ⇒ Lots of singularities 15/15

Let X ⊆ Pn be a degree d hypersurface with finite singular locus
Σ. Assume p 6= 2 and n ≥ 3.

Theorem (−)
Suppose that Σ = ΣO ∪ ΣA, where

ΣO consists of ordinary multiple points x of multiplicity mx ,
ΣA consists of singularities x of type Akx .

Corollary (−)

lim
d→∞

#{f ∈ Fq[x0, . . . , xn]d | {f = 0} no defect}
#Fq[x0, . . . , xn]d

≥ 1
ζPn (n + 3) .
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