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Let X be an algebraic variety over C.

Cohomology theories

@ singular cohomology Hg..(X*", C)
@ analytic de Rham cohomology H3r(X*")
o algebraic de Rham cohomology H3r(X)

o étale cohomology HZ, (X, Qy)

Theorem (Artin, Grothendieck, Hartshorne, de Rham)

All these theories give the same Betti numbers.

Remark (Lefschetz principle + base change)

This generalizes to varieties over arbitrary characteristic 0 fields.
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Example (Betti numbers of affine space)

1 ifi=0,
0 otherwise.

h'(A") = {

Example (Betti numbers of projective space)

1 ifie{0,2,4,...,2n},

0 otherwise.

hi(P") = {

Example (Dimension vanishing)

o hi(X)=0fori<0andi>2dimX,
° hi(X) =0 for i > dim X if X is affine.
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Let K be a field of characteristic 0, n > 3.
Let X = {f = 0} C P} be a hypersurface of degree d over K.

Theorem (Griffiths)

If X is smooth, then:
e hi(X)=h(P") ifi¢ {n—1,2n},
o h?"(X) =0,

a1 B -t/ Klxo, - - -y Xn]
o h (X)— dlmKﬁ +nm0d2.
pat (&L,...85)
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Proof ingredients

@ Lefschetz hyperplane theorem: Natural isomorphisms

H'(P") = H'(X) for0<i<n-—2.

@ Poincaré duality: H'(X) = H?"=2=1(X)V for all i.
e Gysin sequence:

H"=1(X) is (almost) isomorphic to H"(P" \ X).
@ Algebraic de Rham cohomology of P\ X

= cohomology of Q;([XO ol

e Explicit computations (reduction of pole order)
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Hypersurfaces with defect

Let X = {f = 0} be a singular hypersurface in P" with singular
locus ¥. The Lefschetz hyperplane theorem holds, but Poincaré
duality might fail.

Theorem (Dimca/Greuel /Saito, Kato/Matsumoto)
h(X)=h(P") ifi<n—2orn+1+dim¥ <i<2n-2.

Definition

X has defect if h'(X) # h'(IP") for some n < i < n+dimX.
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Examples (Hypersurfaces with defect)

@ reducible hypersurfaces, because
h?"=2(X) = #{irreducible components of X}.

@ cones over smooth curves C C P? of positive genus, as

@ threefold hypersurfaces with at most rational singularities
containing a non-Q-Cartier divisor, because

rk CHY(X) < h*(X).
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Let X C IP" be a degree d hypersurface with singular locus ¥.

Theorem (Cheltsov)

Suppose X C P* has at most ordinary double points as
singularities. Then

X has defect = #¥ > (d —1)°.

Theorem (—)
Suppose X CP", n > 3, has at most isolated singularities. Then
d— 1
X has defect = 17 > L,
n?+n+1

where T denotes the global Tjurina number of f.

N
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@ X has defect is (almost) equivalent to: The natural restriction

H(P"\ X) = Hz(X)

is not surjective.

@ Choosing a hyperplane avoiding ¥, identify
Hz (X) = H'(A"\ (XN A"))/V,

where V is the inverse image of H"“1(X N A") under the
Poincaré residue map.
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@ De Rham cohomology of P\ X and A"\ (X N A") is very
explicit: Get a commutative diagram

K[Xo, ‘e ’Xn]kd—n—l M} K[Xl, ce ,X,,]
gHgQ/Fklsurj. surjlh»—}hw/f“
Gl’lfp Hn(Pn \ X) restriction GI’,;) H},%(X)
using the pole-order filtration P by forms of pole order k.
o Griffiths' reduction of the pole order (J is the Jacobian ideal):
hed = hw/ff=0 in GrgHL(X), k #1.

@ Using the space V:
he B = hw/f"=0 in GrpHZ(X).
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@ Commutative diagram

K[x0, - - Xnlkd—n-1 ~=== K[x1, ..., xa]/((F) + J%)
gHgQ/Fklsurj. surjlh»—>hw/f“
Gr’fp Hn(Pn\X) restriction Gr’fg HE(X)

o If X has defect, then the bottom map is not surjective for
some k > 1. So the top map is not surjective for some k > 1.
e Commutative algebra:
dimy K[x1,...,xa]/({f) + J3) >d—-n+1
d—n+1

=7 = dimg Kpa, .ol /((F) + ) 2 5=~
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Cohomology theories in positive characteristic

Let X be an algebraic variety over a field K of characteristic p > 0.

Cohomology theories

~ algebraic de Rham cohomology H2 (X},
o rigid cohomology HJ,(X/Quot(W(K))),
@ étale cohomology HZ (X, Qy), £ # p.

Theorem (Deligne, Katz/Messing, Kedlaya)

The two theories give the same Betti numbers for smooth
projective varieties over finite fields.
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Definition
A lift of X is a flat scheme over a mixed characteristic dvr whose
special fiber is X.

special fiber < scheme over dvr —  generic fiber
X = XS/FP X/Zp Xn/QP

Theorem (Proper-smooth base change)
If X has a smooth proper lift X with generic fiber X;), then
Hi(X, Q1) = Hiy(%,, Q) for all i and £ £ p.

Theorem (Baldassarri/Chiarellotto)

Let X be a smooth proper scheme over a dvr and let D be a

relative snc divisor. Then H!, (Xs\ Ds) = Hig(X, \ D) for all i.

rig
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Defect in positive characteristic

Let X C P" be a hypersurface.

If X is smooth, then the Betti numbers agree with characteristic 0.

Definition
X has defect if h'(X) # hi(P") for some n < i < 2n— 2.

@ If X has at most isolated singularities, then
X has defect in étale cohomology < h"(X) # h"(P").

@ If X has at most isolated weighted homogeneous singularities,
X has defect in rigid cohomology < h"(X) # h"(P").
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Defect = Lots of singularities

Let X C P" be a hypersurface with at most isolated singularities.

If X lifts to a hypersurface in P" with defect, then

d—n+1
“n+n+1

Can one always lift defect?

T

Let S C P* be a non-liftable surface defined over F, (Vakil). Let
X be a hypersurface containing S. Then S cannot be a Q-Cartier
divisor on X. = X has defect.
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Let X C IP" be a degree d hypersurface with finite singular locus
3. Assume p # 2 and n > 3.

Suppose that ¥ = X o U X4, where

@ > o consists of ordinary multiple points x of multiplicity my,

@ X 4 consists of singularities x of type Ay, .
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Let X C IP" be a degree d hypersurface with finite singular locus
>. Assume p #2 and n > 3.

Theorem (—)

Suppose that ¥ = ¥ o U X4, where

@ X o consists of ordinary multiple points x of multiplicity my,

@ XY, consists of singularities x of type Ag,.
kx

Then: X has defect = Z m,y + Z 2 { >

XEX o XEX A

|z

#{f € Fg[xo,...,xn]a | {f =0} no defect} - 1

d—o0 #FQ[XOa"°7Xn]d B Cpn(n+3)'




