Prof. Dr. E. Große-Klönne
Wednesday, May 23, 2018 - 11:15
Humboldt-Universität zu Berlin, Institut für Mathematik
Rudower Chaussee 25, 12489 Berlin, R. 2.006
Forschungsseminar Algebra und Zahlentheorie
Prof. Dr. E. Große-Klönne
Rigid cohomology is a theory which to varieties $X$ over a field $k$ of characteristic $p$ assigns cohomology vector spaces over a mixed characteristic local field $K$ with residue characteristic $p$ (e.g. $K={\mathbb Q}_p$ if $k={\mathbb F}_p$). If $X$ is smooth and proper then rigid cohomology coincides with crystalline cohomology (tensored with $K$). I want to sketch the construction of this theory.
submitted by Carmen Zyska (zyska@math.hu-berlin.de, +493020931812)