Prof. E. Große-Klönne, HUB
Wednesday, April 17, 2019 - 11:15
Humboldt-Universität zu Berlin, Institut für Mathematik
Rudower Chaussee 25, 12489 Berlin, R. 2.006
FS Algebra und Zahlentheorie
Prof.E. Große-Klönne
Let $F$ be a local field of characteristic zero. Let $G$ be a simply connected semisimple split algebraic group over ${\mathcal O}_F$, let $G^{\vee}$ be its dual. Let $H$ be the pro-$p$ Iwahori Hecke algebra of $G(F)$, with coefficients in a finite extension $k$ of the residue field of $ {\mathcal O}_F$. Motivated by the search for mod-$p$ local Langlands correspondences we suggest to assign to irreducible $H$-modules certain homomorphisms of the absolute Galois group of $F$ into $G^{\vee}(k)$. We then ask if such an assignment can be upgraded into an exact functor between suitable abelian categories.
submitted by Carmen Zyska (zyska@math.hu-berlin.de, [030] 20931812)