Christian Rose (TU Chemnitz, Germany)
Thursday, January 25, 2018 - 16:15
MPI für Mathematik in den Naturwissenschaften Leipzig
Inselstr. 22, 04103 Leipzig, A3 02 (Leon-Lichtenstein-SR), 3. Etage
Gaussian heat kernel bounds play a fundamental role in geometric analysis. We present recent results on explicit Gaussian upper bounds for non-compact manifolds depending on locally uniform Ricci curvature integral assumptions. Furthermore, we discuss generalizations of integral curvature bounds in terms of the so-called Kato class. If time allows, topological applications of those heat kernel upper bounds will be given.
submitted by Antje Vandenberg (Antje.Vandenberg@mis.mpg.de, 0341 9959 50)