Ruriko Yoshida (Naval Postgraduate School)

Tropical Principal Component Analysis and its Application to Phylogenetics

Programm / Abstract:
Principal component analysis is a widely-used method for the dimensionality reduction of a given data set in a high-dimensional Euclidean space. Here we define and analyze two analogues of principal component analysis in the setting of tropical geometry. In one approach, we study the Stiefel tropical linear space of fixed dimension closest to the data points in the tropical projective torus; in the other approach, we consider the tropical polytope with a fixed number of vertices closest to the data points. We then give approximative algorithms for both approaches and apply them to phylogenetics, testing the methods on simulated phylogenetic data and on an empirical dataset of Apicomplexa genomes. This is joint with with Leon Zhang and Xu Zhang.

Zeit:
am Dienstag den 16. Januar 2018 um 10:00

Ort:
MPI für Mathematik in den Naturwissenschaften Leipzig
Inselstr. 22
04103 Leipzig
E1 05 (Leibniz-Saal) 1. Etage

eingetragen von Saskia Gutzschebauch(Saskia.Gutzschebauch@mis.mpg.de, 0341 9959 50)

zurück zum Kalender               Mathematics Calendar of the AMS