MCF

— Version 1.2 (January 7, 2000) —

A network simplex implementation.

Andreas Löbel
Contents

1 **Introduction** ... 3

2 **Changes** ... 7

3 **MCF data structures** .. 8
 3.1 MCF.node — *Node description* .. 10
 3.2 MCF.arc — *Arc description* ... 13
 3.3 MCF.network — *Network description* 16

4 **MCF interface** .. 22
 4.1 Problem reading and writing, ... 22
 4.2 Primal network simplex .. 25
 4.2.1 Slack basis .. 25
 4.2.2 Main iteration loop .. 26
 4.2.3 Pricing ... 27
 4.2.3.1 Multiple partial pricing 27
 4.2.3.2 First eligible arc rule 28
 4.2.3.3 Dantzig’s rule ... 29
 4.3 Dual network simplex ... 29
 4.3.1 Start basis ... 30
 4.3.2 Main iteration loop .. 30
 4.3.3 Pricing ... 31
 4.3.3.1 Multiple partial pricing 31
 4.3.3.2 First eligible arc rule 32
 4.4 MCF utilities ... 32

5 **ZIB Academic License** .. 36
Introduction.

This is the documentation of MCF. MCF is an implementation of a primal and a dual network simplex algorithm. The documentation gives a description of the minimum cost flow problem, the used data structures, and the library interface. How the functions of the library can be used is briefly shown in the file mcflight.c or, in details, in main.c. Please notify the ZIB Academic License conditions at the end of this documentation.

Performance.
MCF has been tested with several classes of artificially generated NETGEN problems and with real-world problems arising from vehicle scheduling (e.g., see Lübbecke [1998]) and telecommunication problems (e.g., see Eisenblätter [1998] and Bornkühler, Eisenblätter, Grötschel, and Martin [1997]). Our computational experiments have always shown a good polynomial behavior of our code. Even truly large-scale real-world instances with several thousand nodes and several million arcs can be solved quickly. The code was checked with Purify making this implementation quite reliable and robust, for more information see http://www.rational.com.

Commercial Applications.
MCF is used commercially for vehicle scheduling in public transit, e.g., in the MICROBUS system of the IVU AG, Berlin, for information see http://www.ivu.de. Moreover, a simplified vehicle scheduling solver, employing MCF as the workhorse, has become a CINT2000 integer benchmark of the SPEC CPU2000 Benchmark suite, for more information see http://www.spec.org.

Literature.

Problem definition.
Given a connected digraph $D = (V, A)$, a linear cost function $c \in \mathbb{Q}^A$, lower and upper bounds $l \in \mathbb{Q}$ and $u \in \mathbb{Q}$ such that $l \leq u$, and node imbalances $b \in \mathbb{Q}$ such that $\mathbf{1}^T b = 0$. Unbounded lower or upper bounds can be defined, but are simulated in MCF by sufficiently small and large values. A node i is called a supply node, a demand node, or a transshipment node depending upon whether b_i is larger than, smaller than, or equal to zero, respectively. The minimum-cost flow problem is to find a flow vector $x^* \in \mathbb{Q}^A$ such that x^* is an optimal solution of the linear program

$$\min \sum_{(i,j) \in A} c_{ij}x_{ij} \quad (1a)$$
subject to
\[\sum_{(i,j) \in A} x_{ij} - \sum_{(j,i) \in A} x_{ji} = b_i, \quad \forall i \in V, \]
\[l_{ij} \leq x_{ij} \leq u_{ij}, \quad \forall (i,j) \in A. \]

The equations (1b) are the so-called flow conservation constraints and the inequalities (1c) are the flow capacities on x. A flow x is called a feasible flow if it satisfies (1b) and (1c). Let \(N \) denote the node-arc incidence matrix of \(D \). In matrix notation, (1) reads
\[\min \{ c^T x \mid Nx = b, \ l \leq x \leq u \}. \]

It is well known that \(N \) and, thus, the constraint matrix of (2) are totally unimodular. For integer vectors \(l, u, \) and \(b \) there exists always an integer optimal flow (see Grötschel, Lovász, and Schrijver [1988]).

Let \(\pi \in \mathbb{Q}^V \) (the so-called node potentials), \(\lambda \in \mathbb{Q}^A \), and \(\eta \in \mathbb{Q}^A \) be the dual multipliers for the flow conservation constraints and the lower and upper bounds. The dual problem of (2) is
\[\max \{ \pi^T b + \lambda^T l - \eta^T u | \pi^T N + \lambda^T - \eta^T \leq c^T, \ \eta \geq 0, \ \lambda \geq 0 \}, \]

Although it is possible to use arbitrary lower bounds, we strongly recommend to use the faster version of MCF with lower bounds fixed to zero. Each nonzero lower bound can easily be transformed to 0 by substituting the flow vector x by \(x' + l, x' \in \mathbb{Q}^A \). Thus, the system \(l \leq x \leq u \) transforms to \(0 \leq x' \leq u - l \). The system \(Nx = b \) transforms to \(Nx' = b - Nl \), which is equivalent to decrease \(b_i \) and to increase \(b_j \) by \(l_{ij} \) for all \((i,j) \in A \). The objective \(c^T x \) transforms to \(c^T x' + \min c^T x' \). Figure 1, which is taken from Ahuja, Magnanti, and Orlin [1993], displays such a lower bound transformation. Note, there is currently no support to transform nonzero lower bounds to zero, you have to do it by yourself!

![Figure 1: Transformation to zero lower bounds.](image)

To apply the network simplex algorithm, we need a full rank constraint matrix. For a connected network \(D \), the rank of the flow conservation constraints is equal to \(|V| - 1 \), and the flow conservation constraint for one node, the so-called root node, can be eliminated. We will assume that we have chosen a root node and have eliminated its flow conservation constraint, i.e., the reduced node-arc incidence matrix has full rank. For notational simplicity, we also denote the reduced node-arc incidence matrix by \(N \). It is well known that every nonsingular basis matrix \(B \) of \(N \) corresponds to a spanning tree of \(A \) in \(D \) and vice versa.

Let \(T \subseteq A \) be a spanning tree in \(D \). The variables \(x_{ij}, (i,j) \in T \), are called the basic variables corresponding to the basis matrix \(B = N_{\cdot T} \). Let \(L \) and \(U \) denote the arcs that correspond to the nonbasic variables whose values are set to their lower and upper bound, respectively. The triple \((T,L,U)\) is called a basis structure. For given nonbasic arc sets \(L \) and \(U \), the right hand side \(b \) transforms to
\[b' = b - \sum_{(i,j) \in U} N_{i,j} u_{ij} - \sum_{(i,j) \in L} N_{i,j} l_{ij}. \]
The associated basic solution is the solution of the system $Bx = b'$, the values of the node potentials are determined by the system $\pi^T B = c^T$. Let $\tau_{ij} := c_{ij} - \pi_i + \pi_j$ denote the reduced costs of an arc $(i, j) \in A$. The dual multipliers λ and η are determined by

$$\lambda_{ij} := \begin{cases} \tau_{ij} & \text{if } (i, j) \in L, \\ 0 & \text{otherwise,} \end{cases} \tag{4}$$

$$\eta_{ij} := \begin{cases} -\tau_{ij} & \text{if } (i, j) \in U, \\ 0 & \text{otherwise.} \end{cases} \tag{5}$$

A basis structure (T, L, U) is called **primal feasible** if the associated basic solution x satisfies the flow bounds (1c) and is called **dual feasible** if for all $(i, j) \in A$:

$$\tau_{ij} > 0 \Rightarrow (i, j) \in L, \tag{6}$$

$$\tau_{ij} < 0 \Rightarrow (i, j) \in U. \tag{7}$$

A basis structure is called **optimal** if it is both primal and dual feasible.

Input and Output Format.

Problems and their solutions are expected to be in DIMACS format, which is for our purposes described in the MCF interface. Further information including network generators and minimum-cost flow codes can be received via anonymous ftp from dimacs.rutgers.edu in the directory /pub/netflow/general-info; see also DIMACS [1990], DIMACS [1993], and Johnson and McGeoch [1993].

References

Version 1.2:

- Minor bug fix in main.c.
- Correct handling of time.h, sys/time.h, and sys/times.h.
- Better dependencies handling on unix/linux systems (requires GNU make).
- Removed prototyp.h and made function prototyping as standard.
- Added prefix MCF_ to all names and identifiers.
- Windows support for a Microsoft Visual C++ 6.0 environment.

Version 1.1:

- MCF is now stable for 64-bit architectures.
- The objective value is now be computed correctly by mcflight.
- Fixed arc values are handled correctly.
- Windows support for a Microsoft Visual C++ 5.0 environment.
MCF data structures.

Names

typedef long MCF_flow_t Default flow type definition

typedef long* MCF_flow_p Default flow pointer definition

typedef long MCF_cost_t Default cost type definition

typedef long* MCF_cost_p Default cost pointer type definition

typedef double MCF_flow_t Flow type definition if MCF_FLOAT is defined

typedef double* MCF_flow_p Flow pointer definition if MCF_FLOAT is defined

typedef double MCF_cost_t Cost type definition if MCF_FLOAT is defined

typedef double* MCF_cost_p Cost pointer definition if MCF_FLOAT is defined

typedef struct MCF_node MCF_node_t Node type definition

typedef struct MCF_node* MCF_node_p Node pointer definition

typedef struct MCF_arc MCF_arc_t Arc type definition

typedef struct MCF_arc* MCF_arc_p Arc pointer definition

typedef struct MCF_network MCF_network_t Network type definition

typedef struct MCF_network* MCF_network_p Network pointer definition

3.1 struct MCF_node Node description 10
3.2 struct MCF_arc Arc description 13
3.3 struct MCF_network Network description 16

In the following, we give a description of the variable types and the data structures of MCF, which are defined in the file "mcfdefs.h". For costs and flows, it is possible either to use the faster integer arithmetic restricted to (4-byte) integers or to use floating point arithmetic with double precision.
For the network simplex algorithm, the input network is assumed to be connected, which is ensured by the following simple procedure: Having read a problem from file, we add to \(V \) one artificial root node, denoted by \(\mathcal{R}_0 \). Each original node \(i \) of \(V \) is then connected to the root node 0 either by the artificially generated arc \((i,0)\) if \(i \) is a supply or transshipment node or by the artificially generated arc \((0,i)\) if \(i \) is a demand node.

Node, arc, and network information are stored in the following data structures.
struct MCF_node

Node description

Members

3.1.1 long number Node identifier 12
 MCF_node_p pred predecessor node
 MCF_node_p child First child node
 MCF_node_p right_sibling Next child of predecessor
 MCF_node_p left_sibling Previous child of predecessor
 long subtreesize Number of nodes (including this one) up to
 the root node
 MCF_arc_p basic_arc The node’s basic arc

3.1.2 long orientation Orientation of the node’s basic arc 12
 MCF_arc_p firstout First arc of the neighbour list of arcs leaving
 this node
 MCF_arc_p firstin First arc of the neighbour list of arcs entering
 this node

3.1.3 MCF_flow_t balance Supply/Demand b_i of this node 12
3.1.4 MCF_cost_t potential Dual node multipliers 13
 MCF_flow_t flow Flow value of the node’s basic arc
3.1.5 long mark Temporary variable 13

Node description.

Let $T \subseteq A$ be a spanning tree in D, and consider some node $v \in V \setminus \{0\}$. There is an unique (undirected) path, denoted by $P(v)$, defined by T from v to the root node 0. The arc in $P(v)$, which is incident to v, is called the basic arc of v. The other terminal node u of this basic arc is called the predecessor (node) of v. The basic arc of v is called upward (downward) oriented if v is the tail (head) node of its basic arc. If v is the predecessor of some other node u, we call u a child (node) of v. Given some order of all children of v, and let u and w be two different children of v. If u is smaller than w with respect to the given order, we call u the left sibling of w and w the right sibling of u. If there is no child u being smaller (greater) than a given child w, then w has no left (right) sibling. Each node has at most one child reference, the other children of a node can be reached by traversing the sibling links. The number of nodes in $P(V)$ is called the subtree size of v.
The subtree size and predecessor variables are used by the ratio test. The orientation, child, and sibling variables are used for the computation of the node potentials. Figure 2 shows a small example of a rooted basis tree for our data structures (the underlying network is a copy from Ahuja, Magnanti, and Orlin [1993]).

![Diagram of a rooted basis tree with labels for basic arc, child, left sibling, and right sibling.

<table>
<thead>
<tr>
<th>node</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>subtree size</td>
<td>9</td>
<td>8</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>predecessor</td>
<td>nil</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>child</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>nil</td>
<td>nil</td>
<td>nil</td>
<td>8</td>
<td>nil</td>
</tr>
<tr>
<td>right sibling</td>
<td>nil</td>
<td>nil</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>nil</td>
<td>nil</td>
<td>nil</td>
<td>nil</td>
</tr>
<tr>
<td>left sibling</td>
<td>nil</td>
<td>nil</td>
<td>nil</td>
<td>nil</td>
<td>nil</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>nil</td>
</tr>
<tr>
<td>orientation</td>
<td>-</td>
<td>down</td>
<td>down</td>
<td>up</td>
<td>down</td>
<td>down</td>
<td>up</td>
<td>up</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2: Rooted basis tree.
3.1.1

long number

Node identifier.

This variable is only used to assign some identification to each node. Typically, as for the DIMACS format, nodes are indexed from 1 to n, where n denotes the number of nodes.

3.1.2

long orientation

Orientation of the node’s basic arc.

This variable stands for the orientation of the node’s basic arc. The value UP (= 1) means that the arc points to the father, and the value DOWN (= 0) means that the arc points from the father to this node.

3.1.3

MCF_flow t balance

Supply/Demand b_i of this node.

Supply/Demand b_i of this node.

A node i is called a supply node, a demand node, or a transshipment node depending upon whether b_i is larger than, smaller than, or equal to zero, respectively.
3.1.4

MCF_cost_t potential

Dual node multipliers.

This variable stands for the node potential corresponding with the flow conservation constraint of this node.

3.1.5

long mark

Temporary variable.

This is a temporary variable, which you can use as you like.

3.2

struct MCF_arc

Arc description

Members

<table>
<thead>
<tr>
<th>MCF_node_p</th>
<th>tail</th>
<th>Tail node</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCF_node_p</td>
<td>head</td>
<td>Head node</td>
</tr>
<tr>
<td>MCF_arc_p</td>
<td>nextout</td>
<td>Next arc of the neighbour list of arcs leaving the tail node</td>
</tr>
<tr>
<td>MCF_arc_p</td>
<td>nextin</td>
<td>Next arc of the neighbour list of arcs entering the head node</td>
</tr>
</tbody>
</table>

3.2.1 MCF_cost_t cost Arc costs 14
3.2.1

| MCF_cost_t cost | Arc costs |

Arc costs.

This variable stands for the arc cost (or weight).

Our primal feasible starting basis consists just of artificial arcs (corresponding to a slack basis), and all originally defined arcs are first nonbasic at their lower bounds. The costs of the artificial arcs are set to MAX_ART.COST, which is defined in the file mcfdefs.h. It is easy to see that any feasible and optimal solution with artificial arcs is also optimal and feasible for the original problem without artificials iff no artificial arc yields a nonzero flow value. If, however, a solution contains an artificial arc with positive flow, the original problem is either indeed infeasible or the MAX_ART.COST is just too small compared to the cost coefficients of the original arcs. If the latter is the case, increase MAX_ART.COST, but we also strongly recommend to use them floating point arithmetic.

3.2.2

| MCF_flow_t upper | Arc upper bound |

Arc upper bound.

This variable stands for the arc upper bound value. Note that an unbounded upper bound is set to UNBOUNDED, which is defined in the file mcfdefs.h. Per default, UNBOUNDED is set to 10^9. Note, this value may be too small for your purposes, and you should increase it appropriately. However, we strongly recommend to use them floating point arithmetic (define MCF_FLOAT).
3.2.3

\texttt{MCF_flow_t lower}

\textit{Arc lower bound}

Arc lower bound.

This variable stands for the arc lower bound value. Note, this variable is only active if the MCF_LOWER_BOUNDS variable is defined! An negative unbounded lower bound is set to \texttt{-UNBOUNDED}, see also the arc upper bound.

3.2.4

\texttt{MCF_flow_t flow}

\textit{Arc flow value}

Arc flow value.

This variable stands for the arc’s flow value. Note that the flow value is not set within the main (primal or dual) iteration loop; actually, it can only be computed using the function primal_obj().

3.2.5

\texttt{long ident}

\textit{Arc status}

Arc status.

This variable shows the current arc status. Feasible is \texttt{BASIC} (for basic arcs), MCF_AT_LOWER_BOUND (nonbasic arcs set to lower bound), MCF_AT_UPPER_BOUND (nonbasic arcs set to the upper bound), MCF_AT_ZERO (nonbasic arcs set to zero), or \texttt{FIXED} (arcs fixed to zero and being not considered by the optimization).
struct MCF_network

Network description

Members

3.3.1 long n Number of nodes 16
3.3.2 long m Number of arcs 17
3.3.3 long primal_unbounded Primal unbounded indicator 17
3.3.4 long dual_unbounded Dual unbounded indicator 17
3.3.5 long feasible Feasible indicator 18
3.3.6 double optcost Costs of current basis solution 18
3.3.7 MCF_node_p nodes Vector of nodes 18
3.3.8 MCF_node_p stop_nodes First infeasible node address 19
3.3.9 MCF_arc_p arcs Vector of arcs 19
3.3.10 MCF_arc_p stop_arcs First infeasible arc address 19
3.3.11 MCF_arc_p dummy_arcs Vector of artificial slack arcs 20
3.3.12 MCF_arc_p stop_dummy First infeasible slack arc address 20
3.3.13 long iterations Iteration count 20
3.3.14 MCF_node_p (*find_lminus) (long n, MCF_node_p nodes,
 MCF_node_p stop_nodes, MCF_flow_p delta)
 Dual pricing rule 21
3.3.15 MCF_arc_p (*find_lea) (long m, MCF_arc_p arcs, MCF_arc_p stop_arcs,
 MCF_cost_p red_cost_of_lea)
 Primal pricing rule 21

3.3.1

long n

Number of nodes

Number of nodes.

This variable stands for the number of originally defined nodes without the artificial root node.
3.3.2

long m

Number of arcs

Number of arcs.
This variable stands for the number of arcs (without the artificial slack arcs).

3.3.3

long primal_unbounded

Primal unbounded indicator

Primal unbounded indicator.
This variable is set to one iff the problem is determined to be primal unbounded.

3.3.4

long dual_unbounded

Dual unbounded indicator

Dual unbounded indicator.
This variable is set to one iff the problem is determined to be dual unbounded.
3.3.5

long feasible

Feasible indicator.

This variable is set to zero if the problem provides a feasible solution. It can only be set by the function primal_feasible() or dual_feasible() and is not set automatically by the optimization.

3.3.6

double optcost

Costs of current basis solution.

This variable stands for the costs of the current (primal or dual) basis solution. It is set by the return value of primalObj() or dualObj().

3.3.7

MCF node p nodes

Vector of nodes.

This variable points to the n + 1 node structs (including the root node) where the first node is indexed by zero and represents the artificial root node.
3.3.8

\text{MCF}_{\text{node}} \cdot p \ \text{stop} \cdot \text{nodes}

First infeasible node address

First infeasible node address.
This variable is the address of the first infeasible node address, i.e., it must be set to $\text{nodes} + n + 1$.

3.3.9

\text{MCF}_{\text{arc}} \cdot p \ \text{arcs}

Vector of arcs

Vector of arcs.
This variable points to the m arc structs.

3.3.10

\text{MCF}_{\text{arc}} \cdot p \ \text{stop} \cdot \text{arcs}

First infeasible arc address

First infeasible arc address.
This variable is the address of the first infeasible arc address, i.e., it must be set to $\text{nodes} + m$.
3.3.11

MCF.arc.p dummy arcs

Vector of artificial slack arcs.

Vector of artificial slack arcs.

This variable points to the artificial slack (or dummy) arc variables and contains n arc structs. The artificial arcs are used to build (primal) feasible starting bases. For each node i, there is exactly one dummy arc defined to connect the node i with the root node.

3.3.12

MCF.arc.p stop dummy

First infeasible slack arc address.

First infeasible slack arc address.

This variable is the address of the first infeasible slack arc address, i.e., it must be set to nodes + n.

3.3.13

long iterations

Iteration count.

Iteration count.

This variable contains the number of main simplex iterations performed to solve the problem to optimality.
3.3.14

MCF_node_p (*\text{\texttt{find_iminus}}\textit{)} (long n, MCF_node_p nodes, MCF_node_p
stop_nodes, MCF_flow_p delta)

\textit{Dual pricing rule}

Dual pricing rule.

Pointer to the dual pricing rule function that is used by the dual simplex code.

3.3.15

MCF_arc_p (*\text{\texttt{find_bea}}\textit{)} (long m, MCF_arc_p arcs, MCF_arc_p stop_arcs,
MCF_cost_p red_cost_of_bea)

\textit{Primal pricing rule}

Primal pricing rule.

Pointer to the primal pricing rule function that is used by the primal simplex code.
MCF interface (vec)

Names

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Problem reading and writing</td>
<td>22</td>
</tr>
<tr>
<td>4.2</td>
<td>Primal network simplex</td>
<td>25</td>
</tr>
<tr>
<td>4.3</td>
<td>Dual network simplex</td>
<td>29</td>
</tr>
<tr>
<td>4.4</td>
<td>MCF utilities</td>
<td>32</td>
</tr>
</tbody>
</table>

4.1 Problem reading and writing

Names

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.1</td>
<td>extern long MCF_read_dimacs_min (char *filename, MCF_network_p net)</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Reading procedure</td>
<td></td>
</tr>
<tr>
<td>4.1.2</td>
<td>extern long MCF_write_solution (char *infile, char *outfile,</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>MCF_network_p net, time, sec)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Writing procedure</td>
<td></td>
</tr>
</tbody>
</table>

4.1.1 extern long MCF_read_dimacs_min (char *filename, MCF_network_p net)

Reading procedure

Reads minimum-cost flow problem (provided in an extended DIMACS format) from input file named *filename*, mallocs the necessary memory, and creates the network data structure. Each input data are assumed to have the following structure:

- For a network with \(n \) nodes it is assumed that the nodes are identified by the integers 1 through \(n \).
- Capacities are integer valued. If you need floating point values, you have to change the source by yourself. Costs and flows are per default integer valued, but with the FLOAT definition in the Makefile, you can use doubles.
• It is assumed that $l_{ij} \leq u_{ij}$ for all $(i,j) \in A$.
• There is no a priori restriction on the number of nodes n or the number of arcs m.
• There may be multiple arcs (i,j) between any pair of nodes i and j. The arcs may have differing costs, capacities, and lower bounds.
• It is not necessarily the case that $(i,j) \in A$ implies $(j,i) \in A$.
• If both (i,j) and (j,i) are in A, it is not necessarily the case that $c_{ij} = -c_{ji}$.
• It is not assumed that the network has a feasible solution nor that the network is connected. This property will be provided by the code by introducing an artificial root node that is connected via artificial slack arcs to each node of the input digraph.

The standard DIMACS file format for network input and output is as follows: All files contain ASCII characters. Input and output files contain several types of lines, described below. A line is terminated with an end-of-line character. Fields in each line are separated by at least one blank space. Each line begins with a one-character designator to identify the line type.

Input Files: First, for minimum-cost flow problems, we recommend to use suffixes `.min` to be conform with the DIMACS format. Second, files are assumed to be well-formed and internally consistent: node identifier values are valid, nodes are defined uniquely, exactly m arcs are defined, and so forth.

• **Comments.** Comment lines give human-readable information about the file and are ignored by programs. Comment lines can appear anywhere in the file. Each comment line begins with a lower-case character `c`.

c This is an example of a comment line.

• **Problem line.** There is one problem line per input file. The problem line must appear before any node or arc descriptor lines. For network instances, the problem line has the following format.

```
 p min NODES ARCS
```

The lower-case characters `p min` signify that this is a minimum-cost flow problem. The `NODES` field contains an integer value specifying n, the number of nodes in the network. The `ARCS` field contains an integer value specifying m, the number of arcs in the network.

• **Node Descriptors.** All node descriptor lines must appear before all arc descriptor lines. They must describe all supply and demand nodes, i.e., nodes i with a nonzero node imbalance b_i must appear. Transshipment nodes may be left out. There is at most one node descriptor line for each node having the following format.

```
n ID FLOW
```

The lower-case character `n` signifies that this is a node descriptor line. The `ID` field gives a node identification number, an integer between 1 and n. The `FLOW` field gives the node flow value b_i.

• **Arc Descriptors.** There is one arc descriptor line for each arc in the network. Arc descriptor lines are of the following form.

```
a SRC DST LOW UPP COST
```

This page has been automatically generated with DOC++
DOC++ is ©1998 by Roland Wunderling and Markus Zöckler
The lower-case character a signifies that this is an arc descriptor line. For a directed arc \((i, j)\), the SRC field gives the identification number for the source vertex \(i\), and the DST field gives the destination vertex \(j\). Identification numbers are integers between 1 and \(n\). The LOW field contains the lower capacity value \(l_{ij}\) and the UPP field contains the upper capacity value \(u_{ij}\). Both value can be replaced by "free" or "FREE" identifying unbounded capacities. The value of the capacity is then set to UNBOUNDED defined in mdefs.h. The COST field contains \(c_{ij}\).

Return Value: integer long value \(-1\) indicating an error.

Parameters:
- `filename` — name of input file to be read.
- `net` — reference to network data structure.

4.1.2

```c
extern long MCF_write_solution ( char *in, char *out, MCF_network *p

  net, time_t sec )
```

Writing procedure

Writing procedure.

Writes solution vector in human readable DIMACS format to file. If the `in` is equal to the `out` name, the solution is append to the input file. Otherwise, the solution is written to `out`. The output file should list the solution value and the nonzero flow assignments for all arcs \((i, j)\) in \(A\). Three types of lines may appear in output files.

- **Comment Lines.** Comment lines are identical in form to those defined for input files. If there is no feasible solution then the algorithm should report this fact on a comment line (in such a case, neither solution lines nor flow lines will appear in the output).

- **Solution Lines.** The solution line has the following format.

  ```
  s SOLUTION
  ```

 The lower-case character `s` signifies that this is a solution line. The SOLUTION field contains the solution value \(\sum_{(i, j) \in A} c_{ij} x_{ij}\).

- **Flow Assignments.** There is one flow assignment line for each arc in the network. Flow assignment lines have the following format.

  ```
  f SRC DST FLOW
  ```

 The lower-case character `f` signifies that this is a flow assignment line. For arc \((i, j)\), the SRC and DST fields give \(i\) and \(j\), respectively. The FLOW field gives \(x_{ij}\).
Return Value: integer long value $\neq 0$ indicating an error.
Parameters: infile — Name of input file name
 outfile — name of output file name
 net — reference to network data structure.
 sec — running time of optimization process

4.2

Primal network simplex.

Names
4.2.1 Slack basis. ... 25
4.2.2 Main iteration loop. 26
4.2.3 Pricing. .. 27

4.2.1

Slack basis.

Names
4.2.1.1 extern long MCF.primal_start_artificial (MCF.network.p net)
Generate primal feasible slack basis 25

4.2.1.1

extern long MCF.primal_start_artificial (MCF.network.p net)

Generate primal feasible slack basis

Generate primal feasible slack basis.

Let $D' := (V \cup \{0\}, A')$ denote the network obtained by adding the artificial root node 0 to V and the artificial slack arcs $(i, 0)$ and $(0, i)$, respectively, to A. Each artificial slack arc has a lower bound of 0, an upper bound of infinity, and a sufficiently large cost coefficient MAX_ART.COST, which is defined in the
file mcfdefs.h. The initial basis tree consist of all artificial slack arcs, each original arc becomes nonbasic at its lower bound, and no arc becomes nonbasic at its upper bound. Such an initial basis structure is called **artificial basis structure**. Obviously, this artificial basis structure is primal feasible for \(D' \) and the original network \(D \) is feasible if the network \(D' \) has a

The use of an artificial basis tree has several advantages. First, it has a simple structure and can be generated quickly. Second, the ratio test and the basis update are quite fast for the first iterations. We have also tried to generate an initial basis structure using a crash procedure. The performance, however, was always slower than starting with an artificial basis tree. The only exceptions occur for special applications where particular problem knowledge can be exploited, for instance, using a delayed column generation.

Return Value: integer long value \(\neq 0 \) indicating an error.

Parameters:
- `net` — reference to network data structure.

4.2.2

Main iteration loop.

Names

4.2.2.1

```c
extern long MCF_primal_net_simplex ( MCF_network_p net )
```

Primal network simplex main iteration loop

4.2.2.1

```c
extern long MCF_primal_net_simplex ( MCF_network_p net )
```

Primal network simplex main iteration loop

For a detailed description of all these single network simplex steps, the reader is referred to Helgason and Kennington [1995].

Return Value: integer long value \(\neq 0 \) if the problem is primal unbounded.

Parameters:
- `net` — reference to network data structure.
4.2.3

Pricing.

Names
4.2.3.1 Multiple partial pricing. ... 27
4.2.3.2 First eligible arc rule. .. 28
4.2.3.3 Dantzig's rule. .. 29

From our point of view, the pricing rule has the most significant influence on the performance of a network simplex implementation. In the literature, there are some pricing rules described as Dantzig's rule, first eligible arc rule, or candidate list rules. We have implemented and tested these pricing rules in slightly modified ways and provide them in our implementation. It turned out that our by far fastest rules are special candidate list rules, called multiple partial pricing.

Return Value: reference to the basis entering arc or NULL pointer if the current basis is optimal with respect to the optimality tolerance.
Parameters: net — reference to network data structure.

4.2.3.1

Multiple partial pricing.

Names
extern MCF arc p
 MCF primal bea mpp 30.5 (long m, MCF arc p arcs,
 MCF arc p stop arcs,
 MCF cost p re d cost of bea)
 K = 30, B = 5

extern MCF arc p
 MCF primal bea mpp 50.10 (long m, MCF arc p arcs,
 MCF arc p stop arcs,
 MCF cost p re d cost of bea)
 K = 50, B = 10

extern MCF arc p
 MCF primal bea mpp 200.20 (long m, MCF arc p arcs,
 MCF arc p stop arcs,
 MCF cost p re d cost of bea)
 K = 200, B = 20

The declaration of the multiple partial pricing rules is
extern arc_t *primal_bea_mpp_KB (int m, arc_t *arcs, arc_t *stop_arcs, cost_t *red_cost_of_bea);

where K and B denote two natural numbers.

The arc set A (without the artificial slack arcs) is divided into $\lceil \frac{|A|}{K} \rceil$ candidate lists, each of size at most K. If the arcs are indexed from 1 to $|A|$, the k^{th} candidate list includes all arcs i satisfying $(i - 1) \mod K = (k - 1)$. There is a hot-list of at most $B + K$ arcs, which is initially empty. The candidate list number next, which defines the first to be examined candidate list in the initial pricing call, is set to 1. The candidate lists are always examined in a wraparound fashion. For a pricing call, the following steps are performed: First, the reduced costs of the arcs being currently in the hot-list are recomputed. If the new reduced costs of such an arc becomes nonnegative, this arc is immediately removed from the hot-list. Second, as long as the hot-list can be filled with at least K additional arcs and not all candidate lists have been examined in this pricing call, we price out all arcs of the next candidate list, add all nonbasic arcs of this list having negative reduced costs to the hot-list, and increment the next variable by 1 (if next$\geq K$, otherwise we reset next to 1). Third, if all candidate lists have been examined, but the hot-list is still empty, the current basis structure is optimal. Otherwise, some arc of the hot-list that violates the reduced cost criterion at most is selected as the basis entering arc. The last step of a pricing call is the preparation of the hot-list for the next pricing call. The new hot-list for the next pricing contains at most B arcs among those arcs of the current hot-list that are not the basis entering arc and that have the most invalid reduced costs.

Multiple partial pricing is very sensitive to the number of arcs making necessary a fine tuning for every problem class. We use and recommend the following default values for K and B depending on the number of arcs (note that a further fine tuning for your data may speed up the code):

<table>
<thead>
<tr>
<th>Number of arcs</th>
<th>K</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>A</td>
<td><10,000$</td>
</tr>
<tr>
<td>$10,000 \leq</td>
<td>A</td>
<td>\leq 100,000$</td>
</tr>
<tr>
<td>$</td>
<td>A</td>
<td>>100,000$</td>
</tr>
</tbody>
</table>

4.2.3.2

First eligible arc rule.

Names

4.2.3.2.1 extern MCF_arc-p

MCF_primal_bea_cycle (long m, MCF_arc-p arcs,
 MCF_arc-p stop_arcs,
 MCF_cost-p red_cost_of_bea)

First eligible arc pricing 29
4.2.3.2.1

\texttt{extern MCF_arc_p MCF_primal_bea_cycle (long m, MCF_arc_p arcs, MCF_arc_p stop_arcs, MCF_cost_p red_cost_of_bea)}

\textit{First eligible arc pricing}

First eligible arc pricing. Searches for the basis entering arc in a wraparound fashion.

4.2.3.3

\textbf{Dantzig's rule.}

\textbf{Names}

4.2.3.3.1 \texttt{extern MCF_arc_p MCF_primal_bea_all (long m, MCF_arc_p arcs, MCF_arc_p stop_arcs, MCF_cost_p red_cost_of_bea)}

\textit{Dantzig's rule} ... 29

4.2.3.3.1

\texttt{extern MCF_arc_p MCF_primal_bea_all (long m, MCF_arc_p arcs, MCF_arc_p stop_arcs, MCF_cost_p red_cost_of_bea)}

\textit{Dantzig's rule}

Dantzig's rule. Determines the arc violating the optimality condition at most.

4.3

\textbf{Dual network simplex.}
4.3.1 Start basis.

Names

4.3.1.1 extern long MCF_dual_start_artificial (MCF_network p net)

Generate dual feasible starting basis

4.3.2 Main iteration loop.

Names

4.3.2.1 extern long MCF_dual_net_simplex (MCF_network p net)

Dual network simplex main iteration loop
4.3.2.1

extern long MCF_dual_net_simplex (MCF_network_p net)

Dual network simplex main iteration loop

Return Value:
integer long value <> 0 if the problem is dual infeasible or unbounded.

Parameters:
net — reference to network data structure.

4.3.3

Pricing.

Names
4.3.3.1 Multiple partial pricing .. 31
4.3.3.2 First eligible arc rule ... 32

The dual pricing methods are similar to the primal ones, but in the dual code we have to search for basis
leavings arcs violating their bounds instead of finding a basis entering arc instead of violating the reduced
cost criterion.

4.3.3.1

Multiple partial pricing

Names
extern MCF_node_p
MCF_dual_limiter_mpp_30.5 (long n, MCF_node_p nodes,
MCF_node_p stop_nodes,
MCF_flow_p delta)
K = 30, B = 5

extern MCF_node_p
MCF_dual_limiter_mpp_50.10 (long n, MCF_node_p nodes,
MCF_node_p stop_nodes,
MCF_flow_p delta)
K = 50, B = 10
First eligible arc rule.

Names

4.3.3.2.1 extern MCF_node_p

MCF_dualLimiter_cycle (long n, MCF_node_p nodes,
MCF_node_p start_nodes,
MCF_flow_p delta)
First eligible arc pricing 32

4.3.3.2.1 extern MCF_node_p MCF_dualLimiter_cycle (long n, MCF_node_p nodes,
MCF_node_p start_nodes,
MCF_flow_p delta)

First eligible arc pricing

First eligible arc pricing. Searches for the basis leaving arc in a wraparound fashion.

4.4

MCF utilities.

Names

4.4.1 extern long MCF_free (MCF_network_p net)
Frees allocated data structures 33

4.4.2 extern double MCF_primObj (MCF_network_p net)
Primal objective $c^T x$ 33

4.4.3 extern double MCF_dualObj (MCF_network_p net)
Dual objective $\pi^T b + \lambda^T l - \eta^T u$ 33

4.4.4 extern long MCF_primalFeasible (MCF_network_p net)
Primal basis checking 34

4.4.5 extern long MCF_dualFeasible (MCF_network_p net)
Dual basis checking 34

4.4.6 extern long MCF_is_basis (MCF_network_p net)
4.4.1

extern long MCF_free (MCF_network_p net)

Frees allocated data structures.

Parameters:
net — reference to network data structure.

4.4.2

extern double MCF_primal_obj (MCF_network_p net)

Primal objective \(c^T x \)

Parameters:
net — reference to network data structure.

4.4.3

extern double MCF_dual_obj (MCF_network_p net)

Dual objective \(\pi^T b + \lambda^T l - \eta^T u \)

Parameters:
net — reference to network data structure.
4.4.4

extern long MCF_primal_feasible (MCF_network_p net)

Primal basis checking

Primal basis checking.

Checks whether a given basis is primal feasible.

Return Value: value <> 0 indicates primal infeasible basis.

Parameters:
- `net` — reference to network data structure.

4.4.5

extern long MCF_dual_feasible (MCF_network_p net)

Dual basis checking

Dual basis checking.

Checks whether a given basis is dual feasible.

Return Value: value <> 0 indicates dual infeasible basis.

Parameters:
- `net` — reference to network data structure.

4.4.6

extern long MCF_is_basis (MCF_network_p net)

Basis checking

Basis checking.

Checks whether the given basis structure is a spanning tree.

Return Value: value <> 0 indicates infeasible spanning tree.

Parameters:
- `net` — reference to network data structure.
extern long MCF_is_balanced (MCF_network p net)

Flow vector checking

Flow vector checking.
Checks whether a given basis solution defines a balanced flow on each node.

Return Value: value < 0 indicates unbalanced flow vector.
Parameters: net — reference to network data structure.
ZIB Academic License.

This license is designed for ZIB software to guarantee freedom to share and change software for academic use, but restricting commercial firms from exploiting our knowhow for their benefit. The precise terms and conditions for use, copy, distribution, and modification are as follows.

The term "Program" below refers to source, object, and executable code, and a the term "Work based on the Program" means either the Program or any derivative work under copyright law: that is a work containing the Program or a portion of it, either verbatim or with modifications and/or translated into another language. Each licensee is addressed as "you".

- This license applies to you only if you are a member of a noncommercial and academic institution, e.g., a university. The license expires as soon as you are no longer a member of this institution.

- Every publication and presentation for which the Work based on the Program or its output has been used must contain an appropriate citation and acknowledgement of the author(s) of the Program.

- You may copy and distribute the Program or Work based on the Program in source, object, or executable form provided that you also meet all of the following conditions:
 - You must cause any work that you distribute or publish, that in whole or in part contains or is derived from the Program or any part thereof, to be licensed as a whole at no charge under the terms of this License. You must accompany it with this unmodified license text. These requirements apply to the Program or Work based on the Program as a whole. If identifiable sections of that work are not derived from the Program, and can be reasonably considered as independent and separate works in themselves, this License does not apply to those sections when you distribute them as separate works. But when you distribute the same sections as a Work based on the Program, the distribution of the whole must be on the terms of this license, whose permissions for other licensees extend to the entire whole and, thus, to each and every part regardless of who wrote it.
 - You must cause the modified files to carry prominent notices stating that you changed the files and the date of any change.
 - You must keep track of access to the Program (e.g., similar to the registration procedure at ZIB).
 - You must accompany it with the complete corresponding human-readable source code. The source code for a work means the preferred form of the work for making modifications to it. For an executable work, complete source code means all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and installation of the executable. However, as a special exception, the source code distributed need not include anything that is normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the executable.

- You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense, or distribute the Program is void and will automatically terminate your rights under this License. However, parties who have received copies or rights from you under this License will not have their licenses terminated so long as such parties remain in full compliance.
- You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to use, modify, or distribute the Program or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by using, modifying or distributing the Program (or any work based on the Program), you indicate your acceptance of this License to do so and all its terms and conditions for copying, distributing or modifying the Program or works based on it.

- Each time you redistribute the Program or Work based on the Program, the recipient automatically receives a license from the original licensor to copy, distribute, or modify the Program subject to these terms and conditions. You may not impose any further restrictions on the recipient's exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties to this License.

- If, as a consequence of a court judgement or allegation of patent infringement or for any other reason (not limited to patent issues), conditions are imposed on you (whether by court order, agreement, or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License.

- If you wish to incorporate parts of the Program into other programs whose distribution conditions are different, write to ZIB to ask for permission.

NO WARRANTY!

- Because the program is licensed free of charge, there is no warranty for the program to the extent permitted by applicable law. The copyright holders provide the program "as is"; without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The entire risk as to the quality and performance of the program is with you. Should the program prove defective, you assume the cost of all necessary servicing, repair, and correction.

- In no event will any copyright holder, or any other party who may modify and/or redistribute the program as permitted above, be liable to you for damages, including any general, special, incidental or consequential damages arising out of the use or inability to use the program (including but not limited to loss of data or data being rendered inaccurate or losses sustained by you or third parties or a failure of the program to operate with any other programs), even if such holder or other party has been advised of the possibility of such damages.