
Fast Visualization of Plane-Like Structures in Voxel Data

Steffen Prohaska, Hans-Christian Hege

Department for Scientific Visualization, Zuse Institute Berlin (ZIB)∗

ABSTRACT

We present a robust, noise-resistant criterion characterizing plane-
like skeletons in binary voxel objects. It is based on a distance map
and the geodesic distance along the object’s boundary. A parameter
allows to control the noise sensitivity.

If needed, homotopy with the original object might be recon-
structed in a second step, using an improved distance ordered thin-
ning algorithm.

The skeleton is analyzed to create a geometric representation
for rendering. Plane-like parts are transformed into an triangulated
surface not enclosing a volume by a suitable triangulation scheme.
The resulting surfaces have lower triangle count than those created
with standard methods and tend to maintain the original geometry,
even after simplification with a high decimation rate. Our algo-
rithm allows to interactively render expressive images of complex
3D structures, emphasizing independently plane-like and rod-like
structures.

The methods are applied for visualization of the microstructure
of bone biopsies.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Viewing algorithms I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling—Curve, surface,
solid, and object representations I.4.7 [Image Processing and Com-
puter Vision]: Feature Measurement—Feature repesentation I.4.7
[Image Processing and Computer Vision]: Scene Analysis—Shape
J.3 [Life and Medical Science]: Health

Keywords: skeletonization, thinning, distance transform, triangu-
lation, visualization

1 INTRODUCTION

High resolution 3D imaging technologies are getting more and
more common in science. Huge amounts of data have to be an-
alyzed and visualized in a concise way. For scalar data isosur-
face representations and volume rendering are standard techniques.
However, for data with rich internal structure, like porous media,
these methods are not always well suited (see e.g. Fig. 9). Iso-
surfaces are likely to consist of several millions of triangles and
cannot be rendered interactively using standard techniques. Even if
rendering performance is not a problem, the structure might be vi-
sually too complex to be depicted as an isosurface. Structures near
the view point occlude those farther away and prevent to properly
visualize the internal composition of the object.

This suggests to start with a shape analysis procedure, creating
a representation of the object that is better suited for visualizing
its internal structure and that may serve also as starting point for
geometrical and topological analysis.

∗Takustr. 7, 14195 Berlin-Dahlem, Germany, prohaska|hege@zib.de

We propose an algorithm that extracts parts of the medial surface
from a binary 3D image representation of an object. This algorithm
is based on a measure which is sensitive to plane-like structures.
It does not preserve the topology of the oritinal object. If needed,
homotopy with the original object can be reconstructed in a second
step. The plane-like parts of the resulting voxel skeleton are trian-
gulated for fast rendering. The rod-like parts are rendered as lines.
The triangulation method creates surfaces not enclosing a volume.
Practical experience shows that these surfaces can also be easily
simplified. They tend to better preserve the original geometrical
structure than isosurfaces, even with a low triangle count.

A natural byproduct of our algorithm is the local thickness of the
object.

2 SKELETONIZATION

2.1 Problem
Imaging devices provide a stack of 3D image data. These are trans-
formed to a binary image by a segmentation procedure assigning
every voxel either to the object or to the background. If the data
are of good quality, a simple thresholding procedure will be fine.
Otherwise some prefiltering or more elaborated algorithms may be
used. The medial surface shall now be extracted. To define the
skeleton, Blum proposed the grassfire analogy [2]: If a fire was lit
at all boundary voxels and the fire propagated with constant speed
towards the center of the object, there would be planes inside the
object where the fire would stop due to missing voxels it could prop-
agate to. These voxels inside the object define the medial surface.
Another definition, widely used, is that the medial surface is located
at the discontinuities of the derivative of the distance transform of
the object. Not sticking to these definitions, basic properties of a
skeleton should be:

• homotopy: the skeleton should preserve the topology of the
original object

• invariance under isometric transformations: the skeleton of a
rotated object should be the rotated skeleton

• reconstructability: the original object should be recon-
structable from the skeleton

• thinness: the skeleton should be only one voxel thick.

In general, it is not possible to exactly fullfill all these require-
ments simultaneously. Perfect reconstructability, e.g., will cause
skeletons to be very sensitive to noise on the surface. One voxel
added at the surface might lead to large spurious side branches.
Thinness is conflicting with reconstructability and rotational invari-
ance in most cases, because one direction has to be favored to re-
move parts being two voxels thick.

There are various approaches to extract skeletons. Basically, four
variants can be distinguished:

• simulation of the ‘grassfire’

IEEE Visualization 2002 Oct. 27 - Nov. 1, 2002, Boston, MA, USA

0-7803-7498-3/02/$17.00 © 2002 IEEE

29

DVD-ROM contains supplementary material.

• analytic computation of the medial axis

• topological thinning

• medial surface extraction from a distance map.

Most relevant for voxel objects are the last two. Thinning algo-
rithms [11] strictly keep the topology of the object (see [9] for a
survey of digital topology), but have problems in finding the medial
surface. To fix this problem, Pudney [15] proposed to combine thin-
ning algorithms with a distance map guiding the process towards
the medial surface. As a side-effect the algorithm is sped up cru-
cially, compared to a naive implementation that visits every voxel
again and again, until no more voxels can be removed. A second
problem is how to locally identify the voxels that are not needed for
homotopy, but should be kept for geometrical reasons, e.g. those
representing endpoints of lines or edges of surfaces. Different local
tests were devised, all afflicted with the problem of trying to detect
a global feature in a local neighborhood. If only endpoints of lines
are to be detected this is less problematic. If the algorithm shall
stop at the edges of planes, local tests are not able to distinguish
between overall important voxels and others. Side branches may
result.

A distance map based approach has the advantage to consider
the overall geometry of the object. Common to such algorithms is
a parameter controlling thickness and size of the skeleton. But it
is not easy to design algorithms that strictly maintain the object’s
topology. Homotopy might be re-established in a second step using
the whole object or a topologically equivalent skeleton. Gagvani
[7] presents a measure, based on the distance map in the neighbor-
hood of each voxel, allowing to identify skeleton voxels. Malandain
[13] uses a more global point of view, taking the nearest boundary
voxels into account. Costa [5] introduces the idea of the geodesic
distance along the surface of the object. We follow the last idea
which we consider to take the most global view. Not only the near-
est boundary voxels, but the shape of the whole surface is taken into
account. A similar idea is used in [14] for Voronoi diagram based
skeletonization in 2D.

The most promising approach seems to be a combination that
takes advantage of the strengths of both approaches: some kind of a
distance map to grasp the overall geometric location of the skeleton
and some type of thinning procedure to guarantee homotopy. Also
important is the possibility to control noise sensitivity by a tuneable
parameter.

2.2 Algorithm
We now present an algorithm to compute a skeleton of a binary
image. In the first subsection we define a measure that characterizes
plane-like skeleton voxels. Thresholding this scalar measure we are
able to select the most prominent plane-like structures. The result
is a skeleton that in general is not homotopic to the original object.

In the second subsection we describe how a skeleton with the
topology of the original object can be re-established by a distance
ordered thinning algorithm. This step is not mandatory. If only de-
tection of plane-like parts is necessary, the first subsection presents
all you need.

At the end of this section we will have computed a voxel rep-
resentation of the skeleton containing plane-like parts. Optionally,
rod-like parts are added to keep the topology of the original object.

2.2.1 Characterization of Skeleton Voxels

We start with a characterization of skeleton voxels based on a dis-
tance map. We assume that for every voxel in the object the nearest
boundary voxel ist known. This information can be approximately

X

Y

Sm

d

Sx

M

Sy

Figure 1: Definition of the measure d, detecting plane like structure
in the skeleton. d is the maximum of the geodesic distances along
the object’s boundary between the surface voxels (Sm,Sx,Sy,Sz).

calculated with well known distance map algorithms (for a com-
prehensive overview see [6]). Only small modifications have to be
made to keep the information about the nearest boundary voxel dur-
ing propagation.

Now we calculate a measure d for a voxel M at position (i, j,k)
in object O as follows (see Fig. 1):

• Look for neighbors in all three directions towards lower co-
ordinates. In our example these are X at (i− 1, j,k) and Y at
(i, j−1,k) and Z (not depicted in the figure) at (i, j,k−1).

• Identify the nearest surface voxels (Sm,Sx,Sy,Sz) for voxel M
and its neighboring voxels X ,Y,Z.

• Calculate the geodesic distances (SmSx,SmSy,SmSz) along the
boundary of object O.

• Take the maximum of these distances, here: d = SmSy.

The geodesic distance can be calculated in a straight forward
way by propagating in the set of the boundary voxels, starting from
a seedpoint (see [17] for a fast algorithm). A skeleton is extracted
by choosing a threshold t and selecting all voxels with d > t.

Except for the following small modifications this is the measure
proposed in [5]. We take neighbors only with lower coordinates be-
cause we want to end up with an one voxel thick skeleton. This re-
quirement contradicts symmetry considerations in most cases. For
example a plane that is an even number of voxels thick would lead
to a skeleton that is two voxels thick if symmetry were preserved.
Therefore we have to break symmetry and favor one direction to
end with a one voxel thick plane.

Suppressing errors due to noisy boundaries requires a minimum
value of the threshold t. We find it useful to set t to at least 5 voxels.
With larger t only the more important parts of the skeleton survive.
The exact value to choose depends on the object and on the features
to be extracted. A practical way to deal with this fact is to inspect
only a part of the object and interactively vary the parameter. A use-
ful value can then easily be chosen. In Fig. 2 skeletons for different
thresholds are depicted. The steps needed to render the images are
described below. Note that we can separate plane-like from thin
rod-like structures and render them as surfaces and tubes, respec-
tively. For higher values of t in these examples nearly all plane-like
structures vanish and only loops remain. Topology is not preserved
by the plane-like structures alone at any of the chosen thresholds.

30

Figure 2: Skeletons with different thresholds t (measured in vox-
els). Structures that are detected as plane-like are rendered as a
surface. Structures detected as rod-like are rendered as tubes. Top
left: Isosurface, top right: t = 5, bottom left: t = 10, bottom right:
t = 20.

In general, topology is conserved only for certain configurations.
Cavities e.g. will be kept because there is no way from the bound-
ary enclosing the cavity to any other boundary, which means d → ∞
for some parts of the skeleton. But for other configurations topol-
ogy might dramatically change.

Even though we favored one direction in the calculation of d, the
such computed skeleton still contains voxels that are not needed for
a unit-wide skeleton. They can be removed in a postprocessing step
by a method described in [3].

Our measure is constructed to be sensitive to plane-like struc-
tures. Thin large planes can be detected because the geodesic dis-
tance encodes the extension of the plane additionally to the thick-
ness. Measures using the euclidian distance [13] or only a local
neighborhood [7] fail in such situations and will disconnect thin
planes. Another related property is the following: if voxels close
to edges of a plane-like structure, e.g. a disk, are considered to be
skeleton voxels, then voxels located closer to the center of the disk
will be considered even more important for the skeleton due to the
growing geodesic distance (see Fig. 1: M is more important than
X). This leads to a nice disk-like skeleton with smooth edges and no
holes. Measures focusing on other properties like reconstructability
[7] do not have this property. Voxels added at the boundary may in-
crease the geodesic distance. As long as the increase is significantly
smaller than the threshold, this ‘noise’ will be ignored.

Note that the measure is not useful for detection of rod-like struc-
tures. Long thin rods might be considered completely as ‘noise’ and
will be deleted. If they are not closed to a loop they are topologi-
cally irrelevant and will not show up in topological reconstruction
as described in the next subsection. Thick structures might be de-
tected if their circumference is larger than 2t. But the focus of our
algorithm is on plane-like structures.

2.2.2 Homotopy

The skeletons constructed up to now are not guaranteed to be homo-
topic to the original object. If preservation of topology is needed,
it can be assured in a second step. Note that strict homotopy with
the original object will force significant changes in the skeleton if

noise creates small loops on the boundary of the object. These loops
have to be kept and may introduce large spurious side branches (see
Fig. 8). Topology should be reconstructed only for objects with
smooth boundaries. The spirit of our algorithm is close to the ideas
presented in [13] and [4]. Assume we have a skeleton S and the cor-
responding object O. In the process of topological reconstruction
[13] parts of the object are added to the skeleton until it is homo-
topic to the original object. These parts should be located at the
center of the object and only voxels should be added that are really
needed. One may start with all voxels of the object and remove
those not needed for homotopy or belonging to S. The order of
the removal should be chosen such that voxels at the center are left
over.

We follow the second point of view and apply a distance ordered
thinning algorithm [15]. During the thinning process all simple
voxels except those belonging to S will be removed. A summary
of the algorithm is given at the end of the subsection. The curi-
ous reader might have a look at it before proceeding to the details
presented in the next paragraphs.

The connectivity of the object is chosen to be 26-connected. In
order to have well defined topological properties the background is
to be 6-connected [9]. The basic idea is to propagate a distance map
starting at the boundary voxels of the object. Every voxel visited is
tested for simplicity and removed if deletion does not break homo-
topy [15]. To get a good localization in the center we propose some
modifications to this basic algorithm.

We do not remove voxels only sequentially, but first visit all vox-
els at a specific distance and mark voxels that will potentially be
removed. After this step we revisit all marked voxels. If they are
still simple in the new configuration after removal of earlier visited
marked voxels, we remove them. Tests for simplicity therefore only
depend on the configuration previous to the iteration. But removal
of two simple voxels in parallel can change topology which requires
the sequential rechecking. The advantage of checking in parallel is
a more uniform erosion of the boundary.

To improve this uniform erosion even more, we propose to in-
troduce a slowdown factor. Each distance will be visited more than
once before advancing to the next and in every iteration all distances
will be processed again up to the actual maximal value. Voxels
tested to be non-simple at some time may get simple in the future if
the neighborhood changes. Voxels should therefore be visited again
to remove them and avoid spurious branches. The ideal case would
be to remove all voxels at one distance first before proceeding to
the next. But this is not possible in all configurations. Removal of
voxels with higher distance value sometimes changes the configu-
ration in a way allowing removal of voxels with a lower distance
value. We will first process every distance several times to delete as
many voxels as possible. But we cannot do this job completely and
at some point we have to proceed to higher distance values. The
slow down factor controls when. It allows to trade speed against
accuracy.

But one major problem still exists. The distance transform is
calculated in three dimensions and guides the process towards the
medial surfaces of the object. However, in the center there may
exist large, two voxel thick surfaces for which all voxels have the
same distance value. If the object got thinned to such a surface, the
order of the checks in the plane would be arbitrary due to the fact
that all these voxels would get processed in parallel and all of the
voxels would be simple before a voxel is removed. The sequential
removal would then delete them in an arbitrary order. Localization
in the middle (2D) of the plane is not guaranteed. To assure central
lines, we have to devise a step that first reduces the two voxel thick
plane to a voxel thick one, before starting to erode this plane from
the edges. This is achieved by introducing two subiterations. In
each subiteration only 13 boundary voxels to the top, right, back
(grey voxels in Fig. 3, right) resp. front, left, down (black voxels)

31

Figure 3: Masks to define two subiterations. From left to right:
Masks to detect face, edge and corner configurations (black cir-
cles depict object voxels, white circles depict background voxels).
Right: A voxel gets processed in subiteration 1/2 if the object voxel
not in the center is located at a grey/black position.

are checked. The detection of these voxels is done by the face, edge,
and corner masks of Fig. 3 and rotated versions. The voxel in the
middle will be marked for checking, if the black voxels are part of
the object and the white voxels are part of the background. Voxels
left empty do not influence the test.

To summarize our algorithm:

• Calculate the chamfer distance map of the object.

• Create a queue for every distance value and insert all voxels
with this distance not belonging to the initial skeleton S.

• Choose an even slowdown factor s, e.g. 6.

• Start with iteration i = 0.

• Process all queues up to distance max = i/s:

– In odd resp. even iterations process boundary voxels of
subiteration 1 resp. 2.

– Mark all voxels that are simple without removing them.

– Remove marked voxels sequentially if they are still sim-
ple, when tested against the remaining voxels.

– All voxels that are not removed, not marked or that do
not belong to the subiteration are queued again.

• Increment iteration count i and repeat until the computed dis-
tance is larger than the maximal distance and no voxel is
changed.

2.3 Implementation Details
The most time consuming part is the calculation of the geodesic dis-
tances. For every voxel in the object a distance map in the boundary
voxels has to be calculated. The number of voxels is N. In case of
plane-like objects with thickness w the number of boundary voxels
is 2N/w, means O(N) boundary voxels. Calculation of a distance
map in an arbitrary set of voxels with the algorithm presented in
[17] visits every voxel once. Runtime of every geodesic distance
map is therefore O(N). The overall runtime would be O(N2) which
is problematic for large N.

But we do not need the whole geodesic distance map. The
threshold t provides an upper limit. Therefore, we never propa-
gate further than t which might touch O(t2) � O(N) voxels. t2

might be rather large, but in regards of N it is O(1). Thus the com-
plexity reduces to O(N). Practically, due to the large constant t2,
implementation should be done with great care.

Calculating the same distance map twice can be avoided. More
than one voxel inside the object might have the same nearest bound-
ary voxel and therefore needs the same distance map. To do this,
we first invert the relation between object voxels and boundary vox-
els. We build a map for every boundary voxel that points to all ob-
ject voxels that have it as the nearest boundary voxel. We then run

through all boundary voxels and initialize a new distance map with
the actual boundary voxel as a seed point. Next we run through
all object voxels that the map points to and calculate the needed
geodesic distances. We propagate the distance map only as far as
needed. In most cases this is smaller than t.

There are many pitfalls along the way: The distance map algo-
rithm starts with a cleared buffer. Naively setting the whole buffer
has runtime O(N) and would therefore break our previous discus-
sion. To minimize the memory to be cleared we store the upper and
lower index of the memory visited during the last propagation and
only clear parts of memory in-between. With our stop criteria only
small parts are needed compared to N, kicking out the factor N that
would have to be payed.

The objects dealt with often fill up only a small percentage of the
overall volume. In these cases it might be useful to introduce some
kind of indexing scheme to get arrays storing only the object voxels
and leaving out the background. The amount of memory is reduced
which also might save time during initialization.

The basic thinning algorithm has complexity O(N) like a dis-
tance map. Our modification to visit every voxel again and again
changes this behaviour. Worst case is to visit every voxel N times
(one voxel thin line tagged at one side together with the worst vis-
iting order). Practically the number of iterations equals the product
of thickness and slowdown factor. Some additional constant due
to long side branches might be added. Overall this is much smaller
than N and we have a runtime O(N) in most of the cases. Efficiency
of the implementation is mostly limited by the local test for sim-
plicity. In [1] a boolean characterization is given which might be
implemented straight forward. In real applications a look-up-table
or binary decision diagrams [16] should be built.

3 GEOMETRIC PRIMITIVES, RENDERING

At this point we got a skeleton consisting of lines and surfaces rep-
resented by voxels. This section describes how to convert the voxel
representation for rendering. The plane-like parts will be trans-
formed into a triangulated surface, the rod-like parts will be rep-
resented and rendered as lines.

Triangulating a voxel surface is different from standard ways of
converting a voxel representation to a polygonal representation. We
do not want to create a surface separating inside from outside, as
is done in isosurface algorithms like e.g. the marching cubes algo-
rithm [12] (for a detailed discussion from a digital topological point
of view see [10]).

Our goal is to construct a surface not enclosing any volume, ex-
cept for cavities in the original object. It has no inside and outside.
Therefore it will be rendered two-sided. The surface should have
the same connectivity as the skeleton. The vertices will be located
at the centers of the voxels except for vertices that have to be added
in the triangulation process. But not all of the connections can be
represented properly by a surface. For rod-like structures tubes or
one dimensional lines will be more suited.

In a first step, edges between voxel centers are constructed that
represent the connectivity of the voxels. In a second step, edges
being part of a plane-like structure will be connected by triangles.
The remaining edges can be displayed as lines or tubes.

Similar to the marching cubes algorithm we try to break the prob-
lem down to an unit lattice cell which has a voxel at every of its cor-
ners. Special care has to be taken to assure continuous transitions
from one cell to the next. Each of these unit lattice cells can be
represented by one of its corners (here the lower, left, front corner).
To avoid ambiguities we demand that every point in space should
be member of only one cell which can be achieved by favoring one
direction: We define a reduced cell as a cell including edges and
faces (without their edges) adjacent to the representative corner and
excluding all other faces, edges and corners. A cell including all

32

Figure 4: Cell configurations for 6-, 18-, 26-connections. Black
circles depict object voxels, white circles depict background voxels.

faces and edges will be called full cell. With this definition every
point of space unequivocally belongs to one of the reduced cells
and the reduced cells fill up whole space. If the algorithm only cre-
ates primitives in the reduced cell no points in space will be touched
twice. But to get connectivity, primitives have to be stiched together
at the boundaries. This has to be done with care to avoid coplanar
triangles.

3.1 Connectivity Graph
Two voxels can only be 26-connected if they are located in the same
cell.

In every reduced cell the connectivity can now be represented by
lines, called connections. A connection is added for every voxel
that is 6-connected to the representative voxel. 18-connections are
introduced if they are needed to keep connectivity on one face of
the cell and 26-connections only if no other connection links the
two voxels. See Fig. 4 for the possible configurations. There are
three possible 6-connections, six possible 18-connections on the
faces to the front, left and bottom (the other faces belong to another
reduced cell) and four possible 26-connections. The result after ap-
plying this procedure to every reduced cell is a graph representing
the skeleton’s connectivity.

The connections are introduced in a way that 6-connections
along an edge are determined by the voxels neighboring the edge,
18-connections lying in a face are determined by the four corner
voxels of the face. But these voxels are completely shared with a
neighboring reduced cell. The configuration is independent of the
cell and therefore the connections too. Consequently it is possi-
ble to construct the correct 6- and 18-connections for all edges and
faces of a full cell. This property guarantees a continuous transition
to the neighboring cells.

3.2 Triangles
As described, we can construct all connections in a full cell. In
the next step a surface will be generated inside every reduced cell
having the described connections as edges. These edges are shared
between full cells which will guarantee a connected surface in the
end. We now going to describe a heuristic to construct triangles
in these cells. To avoid ambiguities we construct the surface only
inside a reduced cell (not a full cell), i.e. one has to take care of
triangles that were to be constructed on the face of a cell. A detailed
inspection of our proposed triangulation reveals few cases in which
our heuristic fails or creates unnatural triangulations. In these cases
a triangulation will be manually specified.

The construction of the triangles is as follows:

• Check for special case (see below). If no special case is de-
tected perform the following steps:

• Construct all connections in the full cell.

• Detect the smallest loop of connections, triangulate it and
mark all connections in that loop as visited.

2

3
5

6

8

1
4

5
6

7 8

1

3 4

5
6

7

Figure 5: Cell configurations that need special triangulation. The
top row shows the edges the bottom row the triangulations. Left
and right: Triangulation is optimized as depicted. Middle: The top
face does not belong to the reduced cell, triangulation cannot be
optimized.

• Repeat detection of the smallest loop that contains an unvis-
ited connection and triangulate that loop until all connections
are visited, or no loop is detected.

During triangulation of the loops creation of triangles on faces of
the cell not belonging to the reduced cell has to be avoided. Other-
wise ambiguities might arise. Note that there are no loops of length
three belonging to the faces, because those would include two 6-
connections that forbid the needed 18-connection. Therefore, only
loops of length four can be located totally on a face, but these are
identical to the face. Hence, we will accept only total faces belong-
ing to the reduced cell. For all other loops a check is done whether
they would create a triangle belonging to a face. If this is the case,
the center of gravity of the vertices of the loop will be added and
triangulation will be done by connecting all vertices to the center of
gravity. In all other cases the triangulation is done by selecting an
arbitrary vertex and connecting it to all other vertices.

The triangulation of a reduced cell is fully determined by the
configuration of the eight corners and a corresponding lookup table
can be build for the 256 cases. An inspection of all cases reveals
one configuration (modulo 8 rotated versions) where the described
procedure creates coplanar triangles. Have a look at the leftmost
column of Fig. 5. To visit all edges, two loops are needed. If
they were 2,6,8,3 and 2,6,5,3 the triangle 2,6,3 would be created
twice. This has to be fixed by storing the triangulation depicted in
the lower row in the lookup table, overriding the automatic genera-
tion.

In some other cases a correct triangulation might be manually
optimized to reduce the number of triangles and to improve the vi-
sual quality. The two rightmost columns of Fig. 5 show such a
case. The top two edge configurations could be transformed into
each other by a simple rotation. But symmetry is broken by our
definition of the reduced cell: the top face does not belong to the
reduced cell and therefore in the left case only one loop is accepted
to create triangles. The loop 5,6,8,7 is left untriangulated. In the
rotated version to the right this loop is transformed to 5,1,3,7 and
is accepted. If we triangulated the second loop 5,6,4,3,7 similar
to the loop in the right case the result would not look very nice.
Too many triangles would be involved and they would be only con-
nected at the edges of the cell. The triangulation depicted at the
bottom right looks much more natural. We insert this hand crafted
triangulation in the lookup table, overriding the automatic version.
We are not allowed to change the left case because it is unclear
whether the configuration in the adjacent reduced cell to the top
would create our hand crafted triangles. In this case we are stuck
with the automatically generated version.

33

Figure 6: A junction configuration that causes problems. The trian-
gulation introduces artificial cavities as seen in the right image.

The described triangulation is applied to every reduced cell to
create the triangulation of the skeleton.

3.3 Remarks
Not all connections will be included in the surface created. Connec-
tions not included represent rod-like structures in the skeleton and
cannot be visualized properly by a surface. They should be treated
separately, e.g. rendered as lines or tubes.

Some junctions may lead to a surface that is locally thicker than
one voxel (see Fig. 6). The triangulation created for these con-
figurations will introduce many artificial cavities. This is an open
problem to be solved. We think that an inspection of a larger neigh-
borhood might do the job and might also be a way to get rid of the
asymmetry introduced by the reduced cell. We will further investi-
gated this idea in the future.

Tests show that the number of triangles in the skeleton surface
is only about 15% of that in the corresponding isosurface. This
alone entails a noticable higher framerate in interactive rendering.
The application of surface simplification algorithms, e.g. [8], might
reduce the number of triangles further. Due to the smaller start-
ing number this process is much faster for the skeleton than for the
isosurface. In case of a very low number of triangles, the skele-
ton tends to keep the geometric location of the planes whereas the
isosurface tends to keep the included volume. In such cases the
skeleton is more useful for visualizing the geometric structure (c.f.
Fig. 7).

4 APPLICATION

The algorithms presented were integrated in the Amira framework
[19, 18]. We applied them to a test object with various levels of
noise added (Fig. 8). The plane-like parts are very stable whereas
the rod-like parts may change dramatically due to loops introduced
by the noise. A real world example is the visualization of bone
biopsies (see Fig. 9) scanned with a micro-CT. We used this ex-
ample to do some timings as described in the figure caption. The
algorithm runs in acceptable time and rendering can be done at in-
teractive framerates. The number of triangles is noticeable lower
compared to the isosurface and simplification of the skeleton sur-
face is easily possible. A goal of this application is to find measures
that quantify the structural composition of the bone. The extracted
skeleton surface is useful for the visualization of local properties of
the network, e.g. the local thickness. These properties can easily be
color-coded onto the surface. We also want to use the skeleton as a
starting point for structural analysis. First steps for quantifying the
structure based on the skeletonization are done. This will be further
developed in the future.

5 RESULTS AND FUTURE WORK

We presented a noise-insensitive algorithm to calculate skeletons
of complex voxel objects. The algorithm has a parameter that al-

Figure 7: Comparison of the high resolution isosurface consisting
of ≈ 50,000 triangles (left). On the right are simplified versions of
the isosurface (grey) and of the skeleton (yellow) with 50 triangles
each. The geometric structure can be better comprehended by the
simplified skeleton.

lows to control the size of plane-like structures being represented
by the skeleton. This allows to suppress noise or to focus on the
most prominent planes. Optionally, topology can be reconstructed
in a second step. The skeleton is split in plane-like and rod-like
structures. The plane-like structures are triangulated, the rod-like
parts are transformed to lines. The amount of triangles necessary to
render the structure is reduced compared to common isosurface al-
gorithms and can be further reduced through surface simplification
methods. The created surface allows for expressive visualizations
and can serve as a base for depicting local properties, e.g. by color-
ing it. Rod-like parts are rendered as lines. Plane-like and rod-like
structures can be independently emphasized.

Some problems regarding the triangulating of junctions remain
and will be tackled in the future. Inspection of a larger neighbor-
hood might solve this problem. It might also allow to remove the
asymmetry introduced by our definition of the reduced cell. Up to
now we represented plane-like and rod-like structures in two dis-
tinct data structures. Therefore surface simplification does not take
into account the connections maintained by the lines. For typical
rendering purposes this is not a problem, but for a topological anal-
ysis a unified representation is necessary. It would also be nice to
include not only planes and lines but also volumetric parts in this
data structure. These parts could be created by well known trian-
gulation algorithms if a measure were available to classify voxels
as volume-, plane- and rod-like. Another interesting point might
be to avoid the triangulation and to use other rendering algorithms
directly on the voxel skeleton.

ACKNOWLEDGEMENTS

This work is performed in frames of the ESA-MAP project AO-99-
030.

We thank Malte Westerhoff for helpful discussions. Image
data are a courtesy of Wolfgang Gowin and Michael Giehl (Cen-
ter of Muscle and Bone Research, Dept. of Radiology, Univ. Hos-
pital B. Franklin, Free University Berlin).

REFERENCES

[1] Gilles Bertrand. A boolean characterization of three-
dimensional simple points. Pattern Recognition Letters,
17:115–124, 1996.

[2] Harry Blum. A transformation for extracting new descriptors
of shape. In W. Walthen-Dunn, editor, Models for the Percep-
tion of Speech and visual Form, pages 362–380. MIT Press,
Cambridge, MA, 1967.

34

[3] Gunilla Borgefors, Ingela Nyström, and Gabriella Sanniti
di Baja. Computing skeletons in three dimensions. Pattern
Recognition, 32:1225–1236, 1999.

[4] Sylvain Bouix and Kaleem Siddiqi. Divergence-based medial
surfaces. In ECCV’2000, volume 1842 of Lecture Notes in
Compute Science, page 603, Dublin, Ireland, June 2000.

[5] Luciano da F. Costa. Multidimensional scale space shape
analysis. In IWSNHC3DI’99, pages 214–217, Santorini,
Greece, 1999.

[6] Olivier Cuisenaire. Distance Transformations: Fast Al-
gorithms and Applications to Medical Image Process-
ing. PhD thesis, Université cotholique de Louvain, Lab-
oratoire de Telecommunications et Teledetection, 1999.
http://ltswww.epfl.ch/∼cuisenai/papers/.

[7] Nikhil Gagvani. Paramter-controlled volume thinning.
Graphical Models and Image Processing, 61(3):149–164,
1999.

[8] Michael Garland and Paul S. Heckbert. Surface simplification
using quadric error metrics. Computer Graphics, 31(Annual
Conference Series):209–216, 1997.

[9] T. Yung Kong and Azriel Rosenfeld. Digital topology: Intro-
duction and survey. Computer Vision, Graphics, and Image
Processing, 48(3):357–393, December 1989.

[10] Jacques-Olivier Lachaud. Continuous analogs of digital
boundaries: A topological approach to iso-surfaces. Graphi-
cal Models, 62:129–164, 2000.

[11] Louisa Lam, Seong-Whan Lee, and Ching Y. Suen. Thin-
ning methodologies — A comprehensive survey. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
14(9):869, 1992.

[12] William E. Lorensen and Harvey E. Cline. Marching cubes:
a high resolution 3D surface construction algorithm. In
M. C. Stone, editor, SIGGRAPH ’87 Conference Proceedings
(Anaheim, CA, July 27–31, 1987), pages 163–170. Computer
Graphics, Volume 21, Number 4, July 1987.

[13] Grégoire Malandain and Sara Fernández-Vidal. Euclidean
skeletons. Image and Vision Computing, 16:317–327, 1998.

[14] Robert L. Ogniewicz and Olaf Kübler. Hierachic Voronoi
skeletons. Pattern Recognition, 28(3):343–359, 1995.

[15] Chris Pudney. Distance-ordered homotopic thinning: A skele-
tonization algorithm for 3D digital images. Computer Vision
and Image Understanding, 72:404–413, 1998.

[16] Luc Robert and Grégoire Malandain. Fast binary image pro-
cessing using binary decision diagrams. Computer Vision and
Image Understanding, 72(1):1–9, 1998.

[17] Ben J. H. Verwer, Piet W. Verbeek, and Simon T. Dekker.
An efficient uniform cost algorithm applied to distance trans-
forms. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 11:425, 1989.

[18] Zuse Institute Berlin (ZIB) and Indeed - Visual Concepts,
Berlin. Amira 2.3 – Programmer’s Guide, August 2001.
http://amira.zib.de.

[19] Zuse Institute Berlin (ZIB) and Indeed - Visual Concepts,
Berlin. Amira 2.3 – User’s Guide and Reference Manual, Au-
gust 2001. http://amira.zib.de.

Figure 8: Test object of size 643 with noise added. Top row: grey
isosurface without noise, with some noise, and with strong noise
added. Next rows: plane-like skeleton (left), homotopic skele-
ton (right), without/with some/with strong noise (2nd/3rd/4th row).
The plane-like part of the skeleton is rather insensitive to noise.
Some small disconnected surfaces emerge in the bottom example
caused by increased thickness of the object due to noise. Thicker
parts are voted more important by the geodesic distance. Noise
might lead to changes in topology. These changes have significant
effects on the homotopic skeleton: New loops show up and change
the rod-like parts completely – an intrinsic concomitant of topology
preservation.

35

Figure 9: Bone biopsy (7 mm width and 18 mm length). The data set consists of 350×285×730 voxels, 5% belonging to the object . Left:
triangulated skeleton (250,000 triangles), local thickness color coded as saturation. Right: Isosurface (5,800,000 triangles), extracted with
a marching cubes algorithm in 86 s. Accurate simplification including global topology checks of this surface to 250,000 triangles took 17
min. Extraction of the skeleton took 438 s (geodesic distance computation: 112 s, postprocessing: 6s, triangulation: 230 s, simplification
90 s) for the plane-like part and additional 90 s for the thinning procedure. The full resolution isosurface is rendered with 0.3 fps. The high
resolution skeleton (960,000 triangles) renders with 1.8 fps and the simplified version with 6.5 fps; rendering of lines decreases speed to 4.6
fps. All timings were done on a SGI Onyx 3400 with R14000 processor (500MHz) and an IR3 pipe with 4 raster managers. The rendering of
the skeleton clearly shows the more rod-like structures at the top, whereas the middle part is dominated by planes ranging from left to right.
Note, how loops are depicted by lines. The focus images in the second row also clearly depict the various structural elements.

36

