
Exploring High-Resolution
 Medical Image Data

Steffen Prohaska
Zuse Institute Berlin

http://www.zib.de/prohaska

BIRS Workshop: Mathematical Foundations
of Scientific Visualization, Computer
Graphics, and Massive Data Exploration
May 22 - 27, 2004

This talk presents two examples of work at our lab used to analyze high resolution
image data.

1

Outline
• Potential Design Goals
• Applications

Exploring Micro-CT Scans of Human Vertebra
Extracting Centerlines of Micro Vessels

• Summary

The applications are somewhat different. The first one, exploration of micro-CT
scans, is designed to be highly interactive. The second one, centerline extraction
from images, is run as a batch job and only the results are to be viewed interactively.
But first some potential design goals when dealing with massive data are
summarized.

2

Potential Design Goals
to Handle Massive Data

The next few slides will give brief overviews over some important ideas to keep in
mind when dealing with massive data.
In general it is not possible to load all the data into the main memory. So out-of-
core storage should be always assumed. Even if they fit into main memory, it would
not be a good strategy to load them completely before starting to process. Just
because loading takes too long.

3

Cache-Oblivious Algorithms
EXTENDED ABSTRACT

Matteo Frigo Charles E. Leiserson Harald Prokop Sridhar Ramachandran

MIT Laboratory for Computer Science, 545 Technology Square, Cambridge, MA 02139

Abstract This paper presents asymptotically optimal algo-

rithms for rectangular matrix transpose, FFT, and sorting on

computers with multiple levels of caching. Unlike previous

optimal algorithms, these algorithms are cache oblivious: no

variables dependent on hardware parameters, such as cache

size and cache-line length, need to be tuned to achieve opti-

mality. Nevertheless, these algorithms use an optimal amount

of work and move data optimally among multiple levels of

cache. For a cache with size Z and cache-line length L where

Z ! L2 the number of cache misses for an m n ma-

trix transpose is " 1 mn L . The number of cache misses

for either an n-point FFT or the sorting of n numbers is

" 1 n L 1 logZ n . We also give an " mnp -work al-

gorithm to multiply an m n matrix by an n p matrix that

incurs " 1 mn np mp L mnp L Z cache faults.

We introduce an “ideal-cache” model to analyze our algo-

rithms. We prove that an optimal cache-oblivious algorithm

designed for two levels of memory is also optimal for multi-

ple levels and that the assumption of optimal replacement in

the ideal-cache model can be simulated efficiently by LRU re-

placement. We also provide preliminary empirical results on

the effectiveness of cache-oblivious algorithms in practice.

1. Introduction

Resource-oblivious algorithms that nevertheless use re-

sources efficiently offer advantages of simplicity and

portability over resource-aware algorithms whose re-
source usage must be programmed explicitly. In this

paper, we study cache resources, specifically, the hier-

archy of memories in modern computers. We exhibit
several “cache-oblivious” algorithms that use cache as

effectively as “cache-aware” algorithms.

Before discussing the notion of cache obliviousness,

we first introduce the Z L ideal-cache model to study
the cache complexity of algorithms. This model, which

is illustrated in Figure 1, consists of a computer with a

two-level memory hierarchy consisting of an ideal (data)
cache of Z words and an arbitrarily large main mem-

ory. Because the actual size of words in a computer is

typically a small, fixed size (4 bytes, 8 bytes, etc.), we

This research was supported in part by the Defense Advanced
Research Projects Agency (DARPA) under Grant F30602-97-1-0270.
Matteo Frigo was supported in part by a Digital Equipment Corpora-
tion fellowship.

Q
cache
misses

organized by
optimal replacement

strategy

Main
Memory

Cache

Z L Cache lines

Lines
of length L

CPU

W
work

Figure 1: The ideal-cache model

shall assume that word size is constant; the particular
constant does not affect our asymptotic analyses. The

cache is partitioned into cache lines, each consisting of

L consecutive words which are always moved together
between cache and main memory. Cache designers typ-

ically use L 1, banking on spatial locality to amortize

the overhead of moving the cache line. We shall gener-
ally assume in this paper that the cache is tall:

Z ! L2 (1)

which is usually true in practice.

The processor can only reference words that reside
in the cache. If the referenced word belongs to a line

already in cache, a cache hit occurs, and the word is

delivered to the processor. Otherwise, a cache miss oc-
curs, and the line is fetched into the cache. The ideal

cache is fully associative [20, Ch. 5]: cache lines can be

stored anywhere in the cache. If the cache is full, a cache
line must be evicted. The ideal cache uses the optimal

off-line strategy of replacing the cache line whose next
access is furthest in the future [7], and thus it exploits

temporal locality perfectly.

Unlike various other hierarchical-memory models

[1, 2, 5, 8] in which algorithms are analyzed in terms of
a single measure, the ideal-cache model uses two mea-

sures. An algorithm with an input of size n is measured

by its work complexityW n —its conventional running
time in a RAM model [4]—and its cache complexity

Q n;Z L —the number of cache misses it incurs as a

ideal-cache model

Process data of any size
with optimal performance

parallel disk model

External Memory Algorithms and Data Structures 215

Fig. 3. Parallel disk model: (a) P = 1, in which the D disks are connected
to a common CPU; (b) P = D, in which each of the D disks is connected to a
separate processor.

The primary measures of performance
in PDM are

(1) the number of I/O operations per-
formed,

(2) the amount of disk space used, and
(3) the internal (sequential or parallel)

computation time.

For reasons of brevity in this survey we
focus on only the first two measures. Most
of the algorithms we mention run in op-
timal CPU time, at least for the single-
processor case. Ideally algorithms and
data structures should use linear space,
which means O(N/B) = O(n) disk blocks of
storage.

2.2. Practical Modeling Considerations

Track size is a fixed parameter of the disk
hardware; for most disks it is in the range
50 to 200 KB. In reality, the track size for
any given disk depends upon the radius
of the track (cf. Figure 2). Sets of adjacent
tracks are usually formatted to have the
same track size, so there are typically only
a small number of different track sizes
for a given disk. A single disk can have
a 3 : 2 variation in track size (and there-

fore bandwidth) between its outer and the
inner tracks.

The minimum block transfer size im-
posed by hardware is often 512 bytes, but
operating systems generally use a larger
block size, such as 8 KB, as in Figure 1. It is
possible (and preferable in batched appli-
cations) to use logical blocks of larger size
(sometimes called clusters) and further re-
duce the relative significance of seek and
rotational latency, but the wall clock time
per I/O will increase accordingly. For ex-
ample, if we set PDM parameter B to be
five times larger than the track size, so
that each logical block corresponds to five
contiguous tracks, the time per I/O will
correspond to five revolutions of the disk
plus the (now relatively less significant)
seek time and rotational latency. If the
disk is smart enough, rotational latency
can even be avoided altogether, since the
block spans entire tracks and reading can
begin as soon as the read head reaches
the desired track. Once the block transfer
size becomes larger than the track size, the
wall clock time per I/O grows linearly with
the block size.

For best results in batched applications,
especially when the data are streamed

ACM Computing Surveys, Vol. 33, No. 2, June 2001.

214 Jeffrey Scott Vitter

Fig. 2. Platter of a magnetic disk drive.

M = internal memory size (in units of
data items),

B = block transfer size (in units of data
items),

D = number of independent disk drives,
and

P = number of CPUs,

where M < N , and 1 ≤ DB ≤ M/2. The
data items are assumed to be of fixed
length. In a single I/O, each of the D disks
can simultaneously transfer a block of B
contiguous data items.

If P ≤ D, each of the P processors can
drive about D/P disks; if D < P , each disk
is shared by about P/D processors. The
internal memory size is M/P per proces-
sor, and the P processors are connected
by an interconnection network. For rout-
ing considerations, one desired property
for the network is the capability to sort the
M data items in the collective main memo-
ries of the processors in parallel in optimal
O((M/P) log M) time.1 The special cases
of PDM for the case of a single proces-
sor (P = 1) and multiprocessors with one
disk per processor (P = D) are pictured in
Figure 3.

Queries are naturally associated with
online computations, but they can also be
done in batched mode. For example, in the
batched orthogonal 2-D range searching

1 We use the notation log n to denote the binary
(base 2) logarithm log2 n. For bases other than 2, the
base is specified explicitly.

problem discussed in Section 7, we are
given a set of N points in the plane and a
set of Q queries in the form of rectangles,
and the problem is to report the points
lying in each of the Q query rectangles.
In both the batched and online settings,
the number of items reported in response
to each query may vary. We thus need to
define two more performance parameters:

Q = number of input queries
(for a batched problem), and

Z = query output size (in units of data
items).

It is convenient to refer to some of the
above PDM parameters in units of disk
blocks rather than in units of data items;
the resulting formulas are often simpli-
fied. We define the lowercase notation

n= N
B

, m = M
B

, q = Q
B

, z = Z
B

(1)

to be the problem input size, internal
memory size, query specification size, and
query output size, respectively, in units of
disk blocks.

We assume that the input data are ini-
tially “striped” across the D disks, in units
of blocks, as illustrated in Figure 4, and
we require the output data to be simi-
larly striped. Striped format allows a file
of N data items to be read or written
in O(N/DB) = O(n/D) I/Os, which is
optimal.

ACM Computing Surveys, Vol. 33, No. 2, June 2001.

214 Jeffrey Scott Vitter

Fig. 2. Platter of a magnetic disk drive.

M = internal memory size (in units of
data items),

B = block transfer size (in units of data
items),

D = number of independent disk drives,
and

P = number of CPUs,

where M < N , and 1 ≤ DB ≤ M/2. The
data items are assumed to be of fixed
length. In a single I/O, each of the D disks
can simultaneously transfer a block of B
contiguous data items.

If P ≤ D, each of the P processors can
drive about D/P disks; if D < P , each disk
is shared by about P/D processors. The
internal memory size is M/P per proces-
sor, and the P processors are connected
by an interconnection network. For rout-
ing considerations, one desired property
for the network is the capability to sort the
M data items in the collective main memo-
ries of the processors in parallel in optimal
O((M/P) log M) time.1 The special cases
of PDM for the case of a single proces-
sor (P = 1) and multiprocessors with one
disk per processor (P = D) are pictured in
Figure 3.

Queries are naturally associated with
online computations, but they can also be
done in batched mode. For example, in the
batched orthogonal 2-D range searching

1 We use the notation log n to denote the binary
(base 2) logarithm log2 n. For bases other than 2, the
base is specified explicitly.

problem discussed in Section 7, we are
given a set of N points in the plane and a
set of Q queries in the form of rectangles,
and the problem is to report the points
lying in each of the Q query rectangles.
In both the batched and online settings,
the number of items reported in response
to each query may vary. We thus need to
define two more performance parameters:

Q = number of input queries
(for a batched problem), and

Z = query output size (in units of data
items).

It is convenient to refer to some of the
above PDM parameters in units of disk
blocks rather than in units of data items;
the resulting formulas are often simpli-
fied. We define the lowercase notation

n= N
B

, m = M
B

, q = Q
B

, z = Z
B

(1)

to be the problem input size, internal
memory size, query specification size, and
query output size, respectively, in units of
disk blocks.

We assume that the input data are ini-
tially “striped” across the D disks, in units
of blocks, as illustrated in Figure 4, and
we require the output data to be simi-
larly striped. Striped format allows a file
of N data items to be read or written
in O(N/DB) = O(n/D) I/Os, which is
optimal.

ACM Computing Surveys, Vol. 33, No. 2, June 2001.

First goal: Process data of any size with optimal performance.
The general goal is to redesign the algorithms to run with minimal performance loss
due to out-of-core data storage. The first step is to understand the data access
patterns. Then, when possible, to redesign the algorithm maximizing data access
locality and to devise a data storage layout consistent with the access pattern to
amortize the cost of I/O operations over several memory access operations.
Algorithms can be analyzed using various models, depicted here is:
1) Parallel disk model \cite{Vitter:ACMCompSurv-01-33-209}. Try do model main
disk, main memory, CPU hierarchy. Subject of analysis: Number of block transfers,
used disk space, CPU work.
2) Ideal-cache model. More recently, cache-oblivious algorithms \cite{Frigo:FOCS
-99} opened a new way of thinking about these problems. The goal there is to
optimize algorithms for any kind of memory hierarchy containing caches, without
having to know details of the hierarchy, like cache or memory sizes. Z: Cachesize, L:

4

Process data of any size
with optimal performance

split, and the two halves are multiplied. In case (4), we

have p max m n . Matrix B is split vertically, and
each half is multiplied by A. For square matrices, these

three cases together are equivalent to the recursive mul-

tiplication algorithm described in [9]. The base case oc-
curs when m n p 1, in which case the two ele-

ments are multiplied and added into the result matrix.

Although this straightforward divide-and-conquer al-
gorithm contains no tuning parameters, it uses cache op-

timally. To analyze the REC-MULT algorithm, we as-
sume that the three matrices are stored in row-major or-

der, as shown in Figure 2(a). Intuitively, REC-MULT

uses the cache effectively, because once a subproblem
fits into the cache, its smaller subproblems can be solved

in cache with no further cache misses.

Theorem 1 The REC-MULT algorithm uses ! mnp

work and incurs ! m n p mn np mp L

mnp L Z cache misses when multiplying anm nma-

trix by an n p matrix.

Proof. It can be shown by induction that the work of

REC-MULT is ! mnp . To analyze the cache misses, let
" 0 be the largest constant sufficiently small that three

submatrices of sizes m n , n p , and m p , where

max m n p " Z, all fit completely in the cache.
We distinguish four cases depending on the initial size

of the matrices.

Case I: m n p " Z. This case is the most intuitive.
The matrices do not fit in cache, since all dimensions are
“big enough.” The cache complexity can be described
by the recurrence

Q m n p (5)

! mn np mp L if m n p " Z 2 " Z

2Q m 2 n p O 1 ow. if m n and m p

2Q m n 2 p O 1 ow. if n m and n p

2Q m n p 2 O 1 otherwise

The base case arises as soon as all three submatrices fit

in cache. The total number of lines used by the three
submatrices is ! mn np mp L . The only cache

misses that occur during the remainder of the recursion

are the ! mn np mp L cache misses required to
bring the matrices into cache. In the recursive cases,

when the matrices do not fit in cache, we pay for the

cache misses of the recursive calls, which depend on the
dimensions of the matrices, plus O 1 cache misses for

the overhead of manipulating submatrices. The solution

to this recurrence is Q m n p ! mnp L Z .

Case II: (m " Z and n p " Z) or (n " Z and

m p " Z) or (p " Z andm n " Z). Here, we

shall present the case where m " Z and n p " Z.
The proofs for the other cases are only small variations
of this proof. The REC-MULT algorithm always divides
n or p by 2 according to cases (3) and (4). At some point

00

11

22

33

44

55

66

77

88

99

1010

1111

1212

1313

1414

1515

1616

1717

1818

1919

2020

2121

2222

2323

2424

2525

2626

2727

2828

2929

3030

3131

3232

3333

3434

3535

3636

3737

3838

3939

4040

4141

4242

4343

4444

4545

4646

4747

4848

4949

5050

5151

5252

5353

5454

5555

5656

5757

5858

5959

6060

6161

6262

6363

00 11 22 33 44 55 66 77

88 99 1010 1111 1212 1313 1414 1515

1616 1717 1818 1919 2020 2121 2222 2323

2424 2525 2626 2727 2828 2929 3030 3131

3232 3333 3434 3535 3636 3737 3838 3939

4040 4141 4242 4343 4444 4545 4646 4747

4848 4949 5050 5151 5252 5353 5454 5555

5656 5757 5858 5959 6060 6161 6262 6363

(c)

(a)

(d)

(b)

00 11 22 33

44 55 66 77

88 99 1010 1111

1212 1313 1414 1515

1616 1717 1818 1919

2020 2121 2222 2323

2424 2525 2626 2727

2828 2929 3030 3131

3232 3333 3434 3535

3636 3737 3838 3939

4040 4141 4242 4343

4444 4545 4646 4747

4848 4949 5050 5151

5252 5353 5454 5555

5656 5757 5858 5959

6060 6161 6262 6363

00 11

22 33

44 55

66 77

88 99

1010 1111

1212 1313

1414 1515

1616 1717

1818 1919

2020 2121

2222 2323

2424 2525

2626 2727

2828 2929

3030 3131

3232 3333

3434 3535

3636 3737

3838 3939

4040 4141

4242 4343

4444 4545

4646 4747

4848 4949

5050 5151

5252 5353

5454 5555

5656 5757

5858 5959

6060 6161

6262 6363

Figure 2: Layout of a 16 16 matrix in (a) row ma-

jor, (b) column major, (c) 4 4-blocked, and (d) bit-

interleaved layouts.

in the recursion, both are small enough that the whole
problem fits into cache. The number of cache misses
can be described by the recurrence

Q m n p (6)

! 1 n np L m if n p " Z 2 " Z

2Q m n 2 p O 1 otherwise if n p

2Q m n p 2 O 1 otherwise ;

whose solution is Q m n p ! np L mnp L Z .

Case III: (n p " Z and m " Z) or (m p " Z

and n " Z) or (m n " Z and p " Z). In each
of these cases, one of the matrices fits into cache, and
the others do not. Here, we shall present the case where

n p " Z and m " Z. The other cases can be
proven similarly. The REC-MULT algorithm always di-
vides m by 2 according to case (2). At some point in the

recursion, m falls into the range " Z 2 m " Z,
and the whole problem fits in cache. The number cache
misses can be described by the recurrence

Q m n (7)

! 1 m if m " Z 2 " Z

2Q m 2 n p O 1 otherwise ;

whose solution is Q m n p ! m mnp L Z .

Case IV: m n p " Z. From the choice of ", all

three matrices fit into cache. The matrices are stored
on! 1 mn L np L mp L cache lines. Therefore,

we have Q m n p ! 1 mn np mp L .

We require the tall-cache assumption (1) in these
analyses, because the matrices are stored in row-major

order. Tall caches are also needed if matrices are stored

A very simple example in which the change of data layout may lead to optimal low
number of cache misses for a matrix multiplication is depicted here.
Top: Left row major, Right column major
Bottom: Left blocked, Right bit interleaved
When using a divide and conquer scheme for matrix multiplication, the bit
interleaved case is the only one which run optimal on every cache size without tuning
any parameter.
Without going into further details, it is worth to keep the basic idea always in mind
when dealing with massive data.
If you focus more on the real world, your major goal might be to provide an
responsive application to the user. The next slide illustrates this.

5

User guided exploration with interactive
and responsive GUI at any time

Data Filtered Data Geometry Images

Data
Source

Data
Filtering

Geometry
Generation

Rendering Display

User

Depicted here is a schematic view of an interactive system allowing exploration of
large datasets. The user needs to control each step of the visualization pipeline at
any time. In general, it cannot be foreseen what the user asks to exactly visualize
next. This fact makes it impossible to predict the data access pattern in full depth.
Also data management is becoming a challenging task when dealing with huge
amounts of data: data consistency, storage capacity, backup facilities and security
become problems on their own. Therefore data is typically stored centrally and has to
be accessed remotely.
The visualization pipeline can then be distributed between server and client in
various ways. Depending on the bandwidth and latency of the network and the
hardware different scenarios might be optimal.
Some other problems might also influence decisions when building real world
software are listed non the next slide.

6

Interoperability
Long-term storage

X

multi platform

<?xml version="1.0"?>
 <meta xmlns:dc="http://purl.org/dc/elements/1.1/">
...

language
neutral

interfaces

e.g. DOM

Fileformats

TIFF

JPEG

The original data is the base of all scientific results. Keeping an untainted version
available for the future should be a major goal and is requested by scientists. To
achieve this, interoperability and language neutral interfaces to the data are
important. Real world applications might therefore refuse to use the most optimized
data structure if it’s not clear how to access them in the future. Using well
established standards might be a better choice. Building new standards should be a
goal.

7

Applications

The next slides present two applications, which made different decisions about the
design focus.
One is oriented towards interactive exploration of the original data.
The other one uses feature extraction in a preprocessing step to generate a geometry
which might then be displayed at interactive framerates.

8

Micro-CT Scans
of Human Vertebrae

The first application is an interactive system to explor image data of human vertebral
bodies.
Full human vertebral bodies are scanned using a micro CT with a voxelsize of about
40µ resulting in an overall dataset size of about 8GB. We expect to acquire about 50
to 70 scans during a bone research project. The overall amount of data which has to
be stored is about 500 GB - 1 TB. Remote access to the datasets is possible for all
project partners. The medical researchers want to interactively explore the datasets
to compare them with results from other imaging devices, mainly with standard CT
scans and histological slices. A more detailed example is shown below.

9

GUI – Volume Rendering, Slicing

Regular Grid Data

Hierarchy of Arrays

HDF5

Disk GridFTP

Local Hard Disk Network

In R
A

M

R
aw

 Binary

Im
age Stacks

High Level Design

During design of a new software interface to large image data one requirement was
to reuse old code already present in our visualization software amira. We stacked
some interfaces on top of each other.
Visualization algorithms, access the data through the most abstract layer, the
Regular Grid Data interface. Legacy code can be accessed through this interface, too.
Massive data have to be available at various resolutions. Right now low resolution
previews are generated and stored as additional data. In principle any file format
which allows to store a Collection of Arrays could be used to achieve this. We chose
HDF5 as our format, which internally provides another abstraction layer. It has a
clearly defined interface to the storage system (local hard disk, network accessed
data, ...). We use GridFTP as our protocol when accessing data remotely. Internally
HDF5 also provide various data layout schemes, e.g. chunked layout.

10

get queue
Data

request block

GUI

Queue

release queue

block available

get block

render
update

render

data fetch thread

Asynchronous Access

To keep an application responsive at any time, providing asynchronous access to the
data is critical.
A Queue which manages requests and available data might be one way to implement
this.
The slide shows some of the most important messages passed between these
objects. The Queue uses a background thread to fetch the data, because hdf5 itself
only provides a synchronous API, which is in my opinion a major deficiency. The GUI
is notified whenever new data is available. It interrupts rendering and user
interaction, retrieves the data, builds a new geometry and continues interactive
visualization. At any point in time, the user might change the requested data, e.g. by
moving a slice, and the application will immediately adapt for this change.

11

gridftp

hdf5

HD

Server
App

hdf5*

gridftp

Client
Auth

get Meta

send Meta

send Block
get Block * enhanced

version

Remote Access

http://www.zib.de/visual/projects/gridlab/hdf5/

To enable remote access we use GridFTP, integrated into an enhanced version of
hdf5. Our modifications allow to send high level block requests via the network
instead of low level seek/read calls. Software is available at our website.
GridFTP is used for authorization, for getting the meta data (size of the data,
bounding box, textual annotations by the users, ...) and for retrieving blocks of
image data. On the client side (right) GridFTP serves as a low level driver integrated
into HDF5. The GridFTP server (left) is implemented using HDF5. This allows to
access the same HDF5 files either locally or remotely.

12

For visualization we mainly use volume rendering and slicing. Both of them retrieve
data progressively
Our volume renderer uses an octree which is populated with high resolution textures
only around a focus point, which can be selected by the user. The user can also set
memory limits. These textures are filled in the background while the actual available
data are already rendered.
In the next slides an actual case where this system was used to investigate the data is
presented.

13

As mentioned before, scientist are interested in comparing image data from different
sources. In this case data from a clinical CT scanner and the data acquired using a
micro-CT.
The location and geometry of the conventional CT slice had been approximately
known. Therefore it was easy to select a central slice of the right thickness (top),
average it in z direction and visually compare it to a slice from the clinical CT scanner
(bottom).
Top left: Select central 4mm slice
Top right: 3D view of selected volume
Bottom Left: CT scan
Bottom Right: micro-CT averaged in z direction

14

You see a smaller area of the CT slice together with a volume rendering of the micro-
CT data. These kind of comparison are used to improve analysis procedures of the
convention CT scans.

15

Confocal Microscopy
of Vessels

In collaboration with
Céline Fouard, Grégoire Malandain
(INRIA Sophia Antipolis)

The goal of the second project is to conduct a morphometric analysis of micro
vessels in human brain tissue. Images are acquired using a confocal microscope. To
cover a larger area, several overlapping images are used. The images are merged to
one large 3D volume.
The overall datasize of this image is about 2 GB.
The quality of the image data is such, that low pass filtering followed by a threshold
segmentation is sufficient to separate the vessels from the background. This
binarized image is processed using a distance ordered thinning algorithm.

16

JOURNAL OF LATEX CLASS FILES, VOL. ?, NO. ??, ?? 2004 4

To compute its chamfer map, the input binary image is

first initialized with 0 value for points in the background,

and infinity (some large number) value for points in the

foreground. It propagates local distances through two scans

on the image, a so-called forward one (video) and a backward

one (reverse video). During each scan, a point’s distance value

is updated by comparison to the distance values of its already

processed neighbors incremented by the corresponding local

chamfer mask coefficients. Typically, during the forward scan

with a 3 × 3 × 3 chamfer mask, the update of the point

M(i, j, k) depends on points N(x, y, z) with z < k or (z = k
and y < j) or (z = k and y = j and x < i).
From an algorithmic point of view, the forward scan comes

to the following

[1] z = 1 to Iz y = 1 to Iy x = 1 to Ix Update value of

(x, y, z)

while the backward scan comes to

[1] z = Iz to 1 y = Iy to 1 x = Ix to 1 Update value of
(x, y, z)

where Ix, Iy , and Iz respectively denote the image dimension

along each direction X , Y , and Z.

Fig. 4. First and last blocks of a large image This figure is too small!

Let us now consider a block-wise processing on a large 3-D

image (Figure ??). The forward and the backward scans have

to be re-designed for a proper distance propagation. Indeed,

let us consider a block lattice on a 3-D image, where Bx, By

and Bz denote the number of blocks along each direction. An

adequate overlap is considered for any two adjacent blocks,

it has to be equal to half the size of the used chamfer mask,

i.e. one voxel for a 3 × 3 × 3 mask, two voxels for a 5 ×
5× 5 mask, etc. The below naive forward scan, consisting in
a simple forward scan on the block, with a forward scan on

each block, does not yield the expected forward propagation.

[1] k = 1 to Bz j = 1 to By i = 1 to Bx Do a forward scan

(as above) on block B(i, j, k)

The point is that the updating within a block may be

due to an adjacent block that is not yet processed. Similar

observations also stand for the naive backward scan on blocks.

To correctly propagate distance values, some block scans

have to be added as follows:

• Forward scan
– For each block line

(a) Correct propagation (b) Incorrect propagation

Fig. 5. Forward scan: a naive forward scan on blocks does not yield the
expected forward propagation.

∗ first process the block line in video di-

rection: from left to right, forward

process each line block.

∗ then process the block line in reverse

video direction: from right to left,

forward process each line block

(except the last one)

– For each block plane

∗ first process the block plane in video direction:

from up to down, forward process

each plane block line.

∗ then process the block plane in reverse video

direction: from down to up, forward

process each plane block line

(except the last one)

• Backward scan

– For each block line

∗ first process the block line in reverse video di-

rection: from right to left, backward

process each line block.

∗ then process the block line in video direction:

from left to right, backward

process each line block (except

the first one)

– For each block plane

∗ first process the block plane in reverse video

direction: from down to up, backward

process each plane block line.

∗ then process the block plane in video direction:

from up to down, backward process

each plane block line (except the

first one)

For the forward scan, the last line blocks and the last block

lines are processed only once while the others are processed

twice. Thus, it could be interesting to design the block

lattice with blocks of different sizes, the largest ones being

located on end lines and line ends, to minimize the additional

computational cost induced by the block-wise processing. The

same strategy can be applied for the backward scan.

JOURNAL OF LATEX CLASS FILES, VOL. ?, NO. ??, ?? 2004 4

To compute its chamfer map, the input binary image is

first initialized with 0 value for points in the background,

and infinity (some large number) value for points in the

foreground. It propagates local distances through two scans

on the image, a so-called forward one (video) and a backward

one (reverse video). During each scan, a point’s distance value

is updated by comparison to the distance values of its already

processed neighbors incremented by the corresponding local

chamfer mask coefficients. Typically, during the forward scan

with a 3 × 3 × 3 chamfer mask, the update of the point

M(i, j, k) depends on points N(x, y, z) with z < k or (z = k
and y < j) or (z = k and y = j and x < i).
From an algorithmic point of view, the forward scan comes

to the following

[1] z = 1 to Iz y = 1 to Iy x = 1 to Ix Update value of

(x, y, z)

while the backward scan comes to

[1] z = Iz to 1 y = Iy to 1 x = Ix to 1 Update value of
(x, y, z)

where Ix, Iy , and Iz respectively denote the image dimension

along each direction X , Y , and Z.

Fig. 4. First and last blocks of a large image This figure is too small!

Let us now consider a block-wise processing on a large 3-D

image (Figure ??). The forward and the backward scans have

to be re-designed for a proper distance propagation. Indeed,

let us consider a block lattice on a 3-D image, where Bx, By

and Bz denote the number of blocks along each direction. An

adequate overlap is considered for any two adjacent blocks,

it has to be equal to half the size of the used chamfer mask,

i.e. one voxel for a 3 × 3 × 3 mask, two voxels for a 5 ×
5× 5 mask, etc. The below naive forward scan, consisting in
a simple forward scan on the block, with a forward scan on

each block, does not yield the expected forward propagation.

[1] k = 1 to Bz j = 1 to By i = 1 to Bx Do a forward scan

(as above) on block B(i, j, k)

The point is that the updating within a block may be

due to an adjacent block that is not yet processed. Similar

observations also stand for the naive backward scan on blocks.

To correctly propagate distance values, some block scans

have to be added as follows:

• Forward scan
– For each block line

(a) Correct propagation (b) Incorrect propagation

Fig. 5. Forward scan: a naive forward scan on blocks does not yield the
expected forward propagation.

∗ first process the block line in video di-

rection: from left to right, forward

process each line block.

∗ then process the block line in reverse

video direction: from right to left,

forward process each line block

(except the last one)

– For each block plane

∗ first process the block plane in video direction:

from up to down, forward process

each plane block line.

∗ then process the block plane in reverse video

direction: from down to up, forward

process each plane block line

(except the last one)

• Backward scan

– For each block line

∗ first process the block line in reverse video di-

rection: from right to left, backward

process each line block.

∗ then process the block line in video direction:

from left to right, backward

process each line block (except

the first one)

– For each block plane

∗ first process the block plane in reverse video

direction: from down to up, backward

process each plane block line.

∗ then process the block plane in video direction:

from up to down, backward process

each plane block line (except the

first one)

For the forward scan, the last line blocks and the last block

lines are processed only once while the others are processed

twice. Thus, it could be interesting to design the block

lattice with blocks of different sizes, the largest ones being

located on end lines and line ends, to minimize the additional

computational cost induced by the block-wise processing. The

same strategy can be applied for the backward scan.

To do this, two steps are required:
 - Calculating a distance map. We use a Chamfer map.
 - Performing a thinning
We modified existing algorithms to allow block wise processing of the dataset.
See C. Fouard, G. Malandain, S. Prohaska, M. Westerhoff, F. Cassot, C. Mazel, D.
Asselot, J. P. Marc-Vergnes. Skeletonization by Blocks for Large 3D Datasets:
Application to Brain Microcirculation. IEEE International Symposium on Biomedical
Imaging: From Nano to Macro, Arlington, Virginia, 2004
Left: Forward scan of a Chamfermap. Scan in video order (top left to right, bottom
left to right).
Top correct scan in one block.
Bottom naive block wise scan gives wrong result --> Correct by adding more scans.

17

At the bottom left a complete slice of human brain tissue is displayed. The area
marked by the red rectangular is displayed at the top. Top right: Brain tissue overlaid
with the mosaic of confocal microscopy images. Bottom right: Extracted centerlines.
The whole lineset contains about 2 million points and about 70 thousand lines.

18

The line set from the previous slide displayed again together with a zoom view on
the left.

19

Summary – Outlook

Batch Processing
Feature Extraction

Interactive System
Exploration of Original Data

Integrated System
Use the Best Tools Available

I showed one application using feature extraction run as a preprocessing step to
allow useful analysis of the data. The other focus was on an interactive system
allowing to explore the original data. Especially scientists in the medical and
biological field tend to really want to see the original data (often in black and white).
They are very used to rely on their own interpretations.
So it is essential to provide these tools in an integrated environment and let the
researchers choose what exactly to use.

20

Summary – Outlook
Batch Processing

Feature Extraction

Interactive System
Exploration of Original Data

Integrated System
Use the Best Tools Available • Reality doesn’t wait

100 GB - 1 TB image data soon

• Scientists ask to see their original data

• I’d love to have a standardized, multi-
resolution, asynchronous, language-neutral
remote interface to these data

• Feature extraction has to be integrated
with original data

Some more thoughts on the future:
Image data in the size of 100 GB - 1 TB per scan will be used on a regular basis
soon. And we assume that a lot of these scans have to be managed. So if you’re
starting to build software for this field today, it should scale into this range.
Basic data management is an issue then. It would be very useful to have a
standardized solution to access these data. I’m not aware of any standardized
solution yet. But I think this will be a task for the future.

21

• ZIB
Andrei Hutanu – Remote access, GridFTP
Ralf Kähler – Hierachical volume rendering
Malte Westerhoff – Micro vessels

• Céline Fouard, Grégoire Malandain (INRIA Sophia Antipolis) – Skeletonization

• F. Cassot, J. P. Marc-Vergnes, F. Lawers, H. Duvernoy – Brain tissue specimens
and images

• W. Gowin, G. Beller (Charité, Univ. Med. Berlin), M. Burkhart, B. Koller, A. Laib
(Scanco Medical), J. S. Thomsen (Univ. of Aarhus) – Bone specimens and µ-CT

• European Space Agency (ESA), French government – Funding

• Indeed Visual Concepts, TGS – Amira, http://amira.zib.de

Acknowledgments

22

