Exploring High-Resolution
Medical Image Data

Steffen Prohaska
Zuse Institute Berlin
http://www.zib.de/prohaska

This talk presents two examples of work at our lab used to nalyze high resolution
image data.



Outline

* Potential Design Goals

* Applications
Exploring Micro-CT Scans of Human Vertebra
Extracting Centerlines of Micro Vessels

e Summary

The applications are somewhat different. The first one, exploration of micro-CT
scans, is designed to be highly interactive. The second one, centerline extraction

from images, is run as a batch job and only the results are to be viewed interactively.

But first some potential design goals when dealing with massive data are
summarized.



Potential Design Goals

to Handle Massive Data

The next few slides will give brief overviews over some important ideas to keep in
mind when dealing with massive data.

In general it is not possible to load all the data into the main memory. So out-of-
core storage should be always assumed. Even if they fit into main memory, it would

not be a good strategy to load them completely before starting to process. Just
because loading takes too long.



Process data of any size
with optimal performance

parallel disk model ideal-cache model

First goal: Process data of any size with optimal performance.

The general goal is to redesign the algorithms to run with minimal performance loss
due to out-of-core data storage. The first step is to understand the data access
patterns. Then, when possible, to redesign the algorithm maximizing data access
locality and to devise a data storage layout consistent with the access pattern to
amortize the cost of I/O operations over several memory access operations.

Algorithms can be analyzed using various models, depicted here is:

1) Parallel disk model \cite{Vitter ACMCompSurv-01-33-209}. Try do model main
disk, main memory, CPU hierarchy. Subject of analysis: Number of block transfers,
used disk space, CPU work.

2) ldeal-cache model. More recently, cache-oblivious algorithms \cite{Frigo:FOCS
-99} opened a new way of thinking about these problems. The goal there is to
optimize algorithms for any kind of memory hierarchy containing caches, without



Process data of any size
with optimal performance

e
SEEs

44)4 75859
445 4 16263

A very simple example in which the change of data layout may lead to optimal low
number of cache misses for a matrix multiplication is depicted here.

Top: Left row major, Right column major

Bottom: Left blocked, Right bit interleaved

When using a divide and conquer scheme for matrix multiplication, the bit

interleaved case is the only one which run optimal on every cache size without tuning
any parameter.

Without going into further details, it is worth to keep the basic idea always in mind
when dealing with massive data.

If you focus more on the real world, your major goal might be to provide an
responsive application to the user. The next slide illustrates this.



User guided exploration with interactive
and responsive GUI at any time

Data Data Geometry

Source Filtering Generation Rendering Display

Data Filtered Data ~ Geometry Images

Depicted here is a schematic view of an interactive system allowing exploration of
large datasets. The user needs to control each step of the visualization pipeline at
any time. In general, it cannot be foreseen what the user asks to exactly visualize
next. This fact makes it impossible to predict the data access pattern in full depth.
Also data management is becoming a challenging task when dealing with huge
amounts of data: data consistency, storage capacity, backup facilities and security
become problems on their own. Therefore data is typically stored centrally and has to
be accessed remotely.

The visualization pipeline can then be distributed between server and client in
various ways. Depending on the bandwidth and latency of the network and the
hardware different scenarios might be optimal.

Some other problems might also influence decisions when building real world
software are listed non the next slide.



Interoperability

Long-term storage e.g. DOMW3C
language
neutral

interfaces

fﬁ TIFF

CGNS JPEG

Fileformats @ @
multi platform

The original data is the base of all scientific results. Keeping an untainted version
available for the future should be a major goal and is requested by scientists. To
achieve this, interoperability and language neutral interfaces to the data are
important. Real world applications might therefore refuse to use the most optimized
data structure if it’s not clear how to access them in the future. Using well

established standards might be a better choice. Building new standards should be a
goal.




Applications

8

The next slides present two applications, which made different decisions about the
design focus.

One is oriented towards interactive exploration of the original data.

The other one uses feature extraction in a preprocessing step to generate a geometry
which might then be displayed at interactive framerates.



Micro-CT Scans
of Human Vertebrae

The first application is an interactive system to explor image data of human vertebral
bodies.

Full human vertebral bodies are scanned using a micro CT with a voxelsize of about
40p resulting in an overall dataset size of about 8GB. We expect to acquire about 50
to 70 scans during a bone research project. The overall amount of data which has to
be stored is about 500 GB - 1 TB. Remote access to the datasets is possible for all
project partners. The medical researchers want to interactively explore the datasets
to compare them with results from other imaging devices, mainly with standard CT
scans and histological slices. A more detailed example is shown below.



High Level Design

GUI —Volume Rendering, Slicing

Regular Grid Data

Hierarchy of Arrays

HDF5

Areuig mey
syoe3g a3ew|

Disk GridFTP

Local Hard Disk | Network

During design of a new software interface to large image data one requirement was
to reuse old code already present in our visualization software amira. We stacked
some interfaces on top of each other.

Visualization algorithms, access the data through the most abstract layer, the
Regular Grid Data interface. Legacy code can be accessed through this interface, too.
Massive data have to be available at various resolutions. Right now low resolution
previews are generated and stored as additional data. In principle any file format
which allows to store a Collection of Arrays could be used to achieve this. We chose
HDF5 as our format, which internally provides another abstraction layer. It has a
clearly defined interface to the storage system (local hard disk, network accessed
data, ...). We use GridFTP as our protocol when accessing data remotely. Internally
HDF5 also provide various data layout schemes, e.g. chunked layout.



Asynchronous Access

get queue

request block

block available

get block

peaJyl yoia4 eIep

(©)
release queue

To keep an application responsive at any time, providing asynchronous access to the
data is critical.

A Queue which manages requests and available data might be one way to implement
this.

The slide shows some of the most important messages passed between these
objects. The Queue uses a background thread to fetch the data, because hdf5 itself
only provides a synchronous API, which is in my opinion a major deficiency. The GUI
is notified whenever new data is available. It interrupts rendering and user
interaction, retrieves the data, builds a new geometry and continues interactive
visualization. At any point in time, the user might change the requested data, e.g. by
moving a slice, and the application will immediately adapt for this change.



Remote Access

Server

Auth

get Meta
send Meta

get Block * enhanced
version
send Block
S —

http://www.zib.de/visual/projects/gridlab/hdf5/

To enable remote access we use GridFTP, integrated into an enhanced version of
hdf5. Our modifications allow to send high level block requests via the network
instead of low level seek/read calls. Software is available at our website.

GridFTP is used for authorization, for getting the meta data (size of the data,
bounding box, textual annotations by the users, ...) and for retrieving blocks of
image data. On the client side (right) GridFTP serves as a low level driver integrated
into HDF5. The GridFTP server (left) is implemented using HDF5. This allows to
access the same HDFS5 files either locally or remotely.



For visualization we mainly use volume rendering and slicing. Both of them retrieve
data progressively

Our volume renderer uses an octree which is populated with high resolution textures
only around a focus point, which can be selected by the user. The user can also set

memory limits. These textures are filled in the background while the actual available
data are already rendered.

In the next slides an actual case where this system was used to investigate the data is
presented.



As mentioned before, scientist are interested in comparing image data from different

sources. In this case data from a clinical CT scanner and the data acquired using a
micro-CT.

The location and geometry of the conventional CT slice had been approximately
known. Therefore it was easy to select a central slice of the right thickness (top),

average it in z direction and visually compare it to a slice from the clinical CT scanner
(bottom).

Top left: Select central 4mm slice

Top right: 3D view of selected volume

Bottom Left: CT scan

Bottom Right: micro-CT averaged in z direction



Lﬂf: A it N 15

You see a smaller area of the CT slice together with a volume rendering of the micro-
CT data. These kind of comparison are used to improve analysis procedures of the
convention CT scans.



Confocal Microscopy
of Vessels

In collaboration with
Céline Fouard, Grégoire Malandain
(INRIA Sophia Antipolis)

The goal of the second project is to conduct a morphometric analysis of micro
vessels in human brain tissue. Images are acquired using a confocal microscope. To

cover a larger area, several overlapping images are used. The images are merged to
one large 3D volume.

The overall datasize of this image is about 2 GB.
The quality of the image data is such, that low pass filtering followed by a threshold

segmentation is sufficient to separate the vessels from the background. This
binarized image is processed using a distance ordered thinning algorithm.



To do this, two steps are required:
- Calculating a distance map. We use a Chamfer map.
— Performing a thinning

We modified existing algorithms to allow block wise processing of the dataset.

See C. Fouard, G. Malandain, S. Prohaska, M. Westerhoff, F. Cassot, C. Mazel, D.
Asselot, J. P. Marc-Vergnes. Skeletonization by Blocks for Large 3D Datasets:
Application to Brain Microcirculation. IEEE International Symposium on Biomedical
Imaging: From Nano to Macro, Arlington, Virginia, 2004

Left: Forward scan of a Chamfermap. Scan in video order (top left to right, bottom
left to right).

Top correct scan in one block.
Bottom naive block wise scan gives wrong result —-> Correct by adding more scans.



At the bottom left a complete slice of human brain tissue is displayed. The area
marked by the red rectangular is displayed at the top. Top right: Brain tissue overlaid
with the mosaic of confocal microscopy images. Bottom right: Extracted centerlines.
The whole lineset contains about 2 million points and about 70 thousand lines.



The line set from the previous slide displayed again together with a zoom view on
the left.



Summary — Outlook

Interactive System
Exploration of Original Data
Batch Processing

Feature Extraction
Integrated System

Use the Best Tools Available

| showed one application using feature extraction run as a preprocessing step to
allow useful analysis of the data. The other focus was on an interactive system
allowing to explore the original data. Especially scientists in the medical and
biological field tend to really want to see the original data (often in black and white).
They are very used to rely on their own interpretations.

So it is essential to provide these tools in an integrated environment and let the
researchers choose what exactly to use.



Summary — Outlook

Feature Extraction

Reality doesn’t wait
100 GB - | TB image data soon

Scientists ask to see their original data

I'd love to have a standardized, multi-
resolution, asynchronous, language-neutral
remote interface to these data

Feature extraction has to be integrated
with original data

Some more thoughts on the future:

Image data in the size of 100 GB - 1 TB per scan will be used on a regular basis
soon. And we assume that a lot of these scans have to be managed. So if you’re
starting to build software for this field today, it should scale into this range.
Basic data management is an issue then. It would be very useful to have a
standardized solution to access these data. I’'m not aware of any standardized
solution yet. But | think this will be a task for the future.



Acknowledgments

e ZIB
Andrei Hutanu — Remote access, GridFTP
Ralf Kahler — Hierachical volume rendering
Malte Westerhoff — Micro vessels

e Céline Fouard, Grégoire Malandain (INRIA Sophia Antipolis) — Skeletonization

o F Cassot, J. P Marc-Vergnes, F. Lawers, H. Duvernoy — Brain tissue specimens
and images

o W.Gowin, G. Beller (Charité, Univ. Med. Berlin), M. Burkhart, B. Koller, A. Laib
(Scanco Medical), J. S.Thomsen (Univ. of Aarhus) — Bone specimens and p-CT

o European Space Agency (ESA), French government — Funding

® Indeed Visual Concepts, TGS — Amira, http://amira.zib.de




