
Visualization of Time-Dependent Remote Adaptive Mesh Refinement Data
Ralf Kaehler∗

Zuse-Institute Berlin (ZIB) and
MPI for Gravitational Physics (AEI)

Steffen Prohaska∗

Zuse-Institute Berlin (ZIB)
Andrei Hutanu†

Louisiana State University (LSU)
Hans-Christian Hege∗

Zuse-Institute Berlin (ZIB)

Figure 1: Three interpolated time steps of an AMR simulation of a black hole collision. The shaded isosurfaces depict the event horizons of the
black holes, and the volume rendered scalar field shows the gravitational waves that are emitted during the merger.

ABSTRACT

Analysis of phenomena that simultaneously occur on different spa-
tial and temporal scales requires adaptive, hierarchical schemes to
reduce computational and storage demands. Adaptive Mesh Refine-
ment (AMR) schemes support both refinement in space that results
in a time-dependent grid topology, as well as refinement in time that
results in updates at higher rates for refined levels.

Visualization of AMR data requires generating data for absent
refinement levels at specific time steps. We describe a solution start-
ing from a given set of “key frames” with potentially different grid
topologies.

The presented work was developed in a project involving sev-
eral research institutes that collaborate in the field of cosmology
and numerical relativity. AMR data results from simulations that
are run on dedicated compute machines and is thus stored centrally,
whereas the analysis of the data is performed on the local comput-
ers of the scientists. We built a distributed solution using remote
procedure calls (RPC). To keep the application responsive, we split
the bulk data transfer from the RPC response and deliver it asyn-
chronously as a binary stream. The number of network round-trips
is minimized by using high level operations. In summary, we pro-
vide an application for exploratory visualization of remotely stored
AMR data.

CR Categories: I.3.4 [Computer Graphics]: Graphics Utilities—
Graphics packages; I.3.6 [Computer Graphics]: Methodology and
Techniques—Graphics data structures and data types; I.3.8 [Com-
puter Graphics]: Applications

Keywords: Time-Varying Data Visualization, Visualization over
Networks, Multiresolution Visualization

∗e-mail:{kaehler,prohaska,hege}@zib.de
†e-mail:ahutanu@cct.lsu.edu

1 INTRODUCTION

Multi-scale phenomena are abundant in many application fields
such as material science, fluid dynamics, geophysics, meteorology
and astrophysics. Representing and simulating these processes nu-
merically is a challenging task since different scales must be re-
solved, requiring enormous amounts of storage and computational
power. An important aspect is adaptivity, i.e. local adjustment of the
spatio-temporal resolution to the details to be resolved, particularly
when time-dependent 3D data is considered. Standard representa-
tions for such data are hierarchical, locally refined grids. Therefore,
an increasing number of scientists are in need of appropriate visu-
alization techniques in order to help them interpret data defined on
such grid structures.

One of the first steps involved in this analysis is exploratory vi-
sualization, which requires highly interactive systems. Examples
of common tasks involved in this include inspection of a data set to
track errors and results; specifying 3D parameters (i.e. sub-volumes
or camera paths) or time range for detailed analysis; and specifying
parameters for a batch visualization task.

Fulfilling these requirements if all data is stored locally may be
achievable. However, in many cases the data is not stored locally,
but on dedicated supercomputers. Often, only a tiny fraction of
the data is required to perform the visualization and analysis tasks.
Transferring a complete data set to a local machine would be a
waste of bandwidth and time. This can be avoided by distributing
the application which would allow direct access to remotely stored
data. The primary goal is for the system to use network resources
efficiently while maintaining interactivity. Changes to existing soft-
ware should be kept minimal. These goals can be attained through
thorough analysis of the application and proper choice of distribu-
tion.

We present such a solution for a specific type of locally refined
hexahedral grids, AMR grids. These grids are employed in a nu-
merical scheme that was originally developed by Berger and Oliger
in the context of multi-level techniques for solving hyperbolic par-
tial differential equations [5]. A variant of this approach, structured
Adaptive Mesh Refinement (SAMR), has gained increasing pop-
ularity over the last few years and is presently applied in various
domains, such as computational fluid dynamics [3], relativistic as-

trophysics [31, 22] and cosmology [9, 1].
Visualizing time-dependent AMR data is challenging. One of

the reasons is that the topology of the AMR hierarchy is not con-
stant over time, but is altered frequently based on local regridding
procedures. This implies that during visualization, the missing
data must be approximated by interpolation between grid layouts
with potentially different topology.

This paper reports on work that has been carried out in collabo-
ration between international research groups. Our application sce-
nario can be characterized as:

• The data is the result of time-dependent, structured AMR sim-
ulations in the fields of numerical relativity and cosmology.

• The simulations store various scalar-, vector- and tensorfield
quantities. Recent simulations contain several thousand time
steps of several field variables defined on up to 600,000 sep-
arate subgrids, resulting in storage demands of hundreds of
gigabytes per simulation run.

• The data is stored on dedicated supercomputers with limited
graphic capabilities and needs to be analyzed interactively by
several research groups in the US and Europe.

We describe a visualization system that meets these require-
ments. It allows to extract and transfer single time steps from re-
mote, time-dependent AMR data to local clients, taking full advan-
tage of local graphics hardware for rendering. Our approach:

• generates an intermediate grid hierarchy by merging the cells
on all refinement levels that are present in the key frames,

• induces a nested grid structure on the resulting collection of
cells,

• generates intermediate grid functions by interpolating be-
tween each set of corresponding data samples on these merged
hierarchies,

• executes these steps on a data server and efficiently transfers
interpolated data to the client as a binary data stream, and

• controls the data server through remote procedure calls, im-
plemented using SOAP.

2 RELATED WORK

Several papers published in the last few years deal with render-
ing methods for AMR data. Norman et al. describe an approach
of resampling AMR data to uniform and unstructured grids [24].
Weber et al. proposed an approach for crack-free isosurface extrac-
tion, as well as, a parallel software and a hardware accelerated cell-
projection algorithm for AMR data [38, 40, 39]. Kaehler et al. pre-
sented an approach for accelerated texture-based volume rendering
of large, sparse data sets by representing non-transparent regions
using AMR data structures [19] and a hardware-supported, texture-
based volume rendering algorithm for AMR data that directly em-
ploys the hierarchical structure of this data type [18, 17]. Park et al.
presented a splatting approach [25].

Visualization methods for time-dependent data on unstructured
grids have been presented by Polthier et al. [26], Happe et al. [13]
and Schmidt et al. [30]. These approaches require the existence of
two grids and associated grid functions at each time step at which
the underlying grid structure is adapted: the solution before and
after grid refinement, respectively grid coarsening. This ensures
that on each pair of consecutive time steps the interpolation can be
carried out on identical grids.

Applying all these techniques to remotely stored data could be
achieved by image-based streaming approaches, as in VNC [29] or

Vizserver [34]. These technologies require little or no software de-
velopment and provide a solution in many use cases; however, they
may be limited by missing or low end graphics hardware on the
data server. Another restriction is that they do not support loading
multiple data sets from different locations in the same visualization
session. If the latency of the network is high, image-based stream-
ing approaches suffer from low frame rates and low responsiveness.
A round-trip time for overseas connections through the Internet is
approximately 150 ms. As one round-trip is required to pass new
viewing parameters and return an image the frame rate is limited to
6 fps. Taking into account the processing time of the application;
the image readback and encoding; the transfer to the client; and
decoding and display at the client the frame rate drops to 1–2 fps.
Because the local hardware capabilities are not used, stereo projec-
tion or a multi-wall immersive environment like a CAVE cannot be
driven directly.

Hybrid approaches like image based rendering assisted volume
rendering [23], for example Visapult [7], are able to hide network
latency. Billboards are generated on a server and transferred to the
client, where they are composited by graphics hardware. Local ge-
ometry may also be integrated in this process. This approach was
presented for volume rendering. It is not obvious how to extend it
to arbitrary visualization methods. For very dynamic user interac-
tions, for example changes to a completely different viewpoint or
unanticipated parameter changes, network round-trips are involved
in updating the visualization and network latency will become ap-
parent.

Remote file access could be utilized to distribute an application
in a simple way using one of the many existing architectures. Using
local graphics hardware for rendering guarantees high interactivity.
Data sizes are limited by the capabilities of the local hardware. Us-
ing the same API for local and remote file access (SRB [4], HDF5
[28]) is convenient but unawareness of the network latency is costly.
If multiple accesses (each consuming at least one network round-
trip) are necessary to transfer the data of interest, only a small frac-
tion of the available network bandwidth can be utilized.

Systems that do provide high-level selection operations are
preferable but they are often either limited to a specific class of
selection operations (RIO [10], OpenDAP [11]), data objects (Dat-
aCutter [8], Active Data Repository [20]) or both (parallel netCDF
[21]). GridFTP [2] can be used to implement user-defined, high-
level selection operations but does not provide direct support for
specifying complex interfaces.

If low interaction is sufficient—for example the visualization pa-
rameters may be known in advance for a class of files—presenting
results in a web portal may be useful [16]. This may also be the case
if sub sets of the data selected for rendering grow beyond the capa-
bilities of local hardware. Utilizing more capable hardware near
the data source for rendering may be the only option. Image-based
streaming of hybrid approaches as discussed above can be used to
provide restricted interactivity.

We will briefly review the AMR scheme in Section 3. The gen-
eration of the intermediate hierarchies and the interpolation is dis-
cussed in Section 4 and 5. Next the remote data access is described
(Section 6) and we conclude with presenting and discussing results
(Section 7).

3 ADAPTIVE MESH REFINEMENT

The basic idea of AMR is to combine the simplicity of structured
grids with the advantages of local grid adaption. In this approach
the computational domain is covered by a set of coarse, structured
subgrids. During the computation, local error estimators are uti-
lized to detect cells that require higher resolution. These cells are
covered by a set of rectangular subgrids. Unlike in finite element
approaches, these subgrids do not replace, but rather overlay the

(a) (b) (c)

Figure 2: Refinement process for AMR schemes: Cells that require
refinement are determined using local error criteria (a) and clustered
into separate subgrids (b), which cover the regions with higher reso-
lution. This process is recursively continued until each cell fulfills the
error criteria (c).

refined regions of the coarse base grid.
The equations are advanced on the finer subgrids and this re-

finement procedure recursively continues until all cells fulfill the
considered error criterion, giving rise to a hierarchy of nested re-
finement levels, as shown in Figure 2.

An advantage of AMR is that each subgrid can be viewed as
an separate, independent grid with a separate storage space. This
allows to process subgrids almost independently during integration
and hence the approach is well suited for parallel processing.

In the following we will restrict the discussion to the special case
called structured adaptive mesh refinement (SAMR), in which the
subgrids can not have arbitrary orientations, but are rather aligned
with the major axes of the coordinate system, though the described
techniques can also be applied to the general case.

In the next subsection we will briefly introduce some notations
that are used in the remainder of this paper.

3.1 Notations

Let Ω ⊂ R3 denote the data domain, which is discretized by a hi-
erarchy of axis-aligned grids (Ωl)l=0,1,...,lmax with decreasing mesh
spacings. The index l numbers the refinement level, starting with
0 for the coarsest level. Let the mesh spacing of the coarsest grid
be given by h0 = (h0

0,h
0
1,h

0
2). The mesh spacings of the finer grids

are recursively defined by hl := (hl−1
0 /r,hl−1

1 /r,hl−1
2 /r), where the

positive integer r denotes the so-called refinement factor. In prin-
ciple this factor can differ for each direction and each level, but in
order to simplify the notation we assume that it is constant.

Further let the vertices of Ωl be denoted by xl
i jk The grid cell de-

noted by Ωl
i jk ⊆ Ωl contains the vertices xl

i, j,k,x
l
i+1, j,k,x

l
i, j+1,k,

In the AMR approach, cells are either completely refined by cells
of the next finer grid , or remain completely unrefined. Each coarse
cell can be decomposed into a set of r3 cells of the next finer dis-
cretization

Ω
l
i jk =

⋃
î, ĵ,k̂

Ω
l+1
î ĵk̂

with î = ri,ri+1, . . . ,ri+ r; ĵ, k̂ = . . . ,

so the cells Ω
l+1
î ĵk̂

provide a refinement of the coarse cell Ωl
i jk. Since

AMR grids can be represented as a tree of nested levels, the coarse
base grid Ω0 is also called root level in this context.

The m-th subgrid of Ωl will be denoted by Γl
m, compare Fig-

ure 3. The union of all level l subgrids Λl :=
⋃nl

m=0 Γl
m is called

refinement level l or just level l. By construction these levels are
nested: Λl+1 ⊆ Λl ⊆ Ωl . We will denote the whole grid hierarchy,
i.e. the union of all refinement levels by H :=

⋃lmax
l=0 Λl .

x11x01

x00 x10

Γ1
0

Γ2
0

Γ1
1

Γ1
2

Γ0
0

h0
1

h1
1

Ω00

Figure 3: Two-dimensional example of a structured AMR grid. The
root level Γ0

0 is refined by three subgrids Γ1
0,Γ

1
1,Γ

1
2 that generate the

refinement level Λ1. Λ1 itself is refined by one subgrid Γ2
0.

3.2 Temporal Refinement Scheme

For numerical solvers of partial differential equations with explicit
time-integration, stability conditions demand that the time step size
∆t of the scheme corresponds to the mesh size ∆x, in the sense that
the time step decreases as the mesh spacings decreases. Hence a
global time step for all subgrids in an AMR hierarchy would be
determined by the cell size of the highest resolved level present in
the hierarchy, resulting in a large computational overhead for the
coarser levels.

This is the reason for the fact that besides the spatial refinement,
AMR schemes for solving partial differential equations addition-
ally perform a refinement in time. That means the spatially refined
levels are updated more frequently than the coarser ones. The order
in which the levels are advanced in time is shown in Figure 4.

Level 0

Level 1

Level 2

Time

0 1 2 3 4

Figure 4: Order of temporal integration of a grid hierarchy with an
overall temporal refinement factor of rt = 2.

First, the coarse level Λ0 is advanced for a large time step. Next
the integration routine is recursively called for the refined levels
Λ1, ...,Λlmax , and these subgrids are advanced with a decreasing
time step size. The integration of the finer levels is followed by the
so-called restriction step, which updates the coarse grid function by
the more accurate values of the finer ones.

In the last step the solution is inspected and the grid structure
is adapted based on the local error criterion. This implies that the
topology of Λl , ...,Λlmax might change after each integration step on
a level l. In general the structure of the whole hierarchy (except for
the root level) is modified at time steps at which the root level grid
is updated.

The time steps of the refined levels need not necessarily be
equally distant, but it must be ensured that after an integer number
of updates the times of all levels in the hierarchy match up again.

In the following we denote the union of level l subgrids at a
certain time by Λl(t) and the grid hierarchy by H (t).

4 GENERATION OF INTERMEDIATE GRIDS

The resulting change of the underlying grid structure complicates
the interpolation of intermediate time steps during the visualization
phase. Consider again the example of Figure 4. For time steps 0
and 4 data at all refinement levels is available, but for time step 1,
only the second level contains subgrids.

So in order to visualize this discrete time step the data for level
0 and level 1 must be generated from the stored information. For
level 0, data is given for time 0 and 4, whereas for level 1 there is
data at time 0 and 2. If for each level the subgrids before and after
regridding are available, then interpolation is not problematic, since
for each node in t l

a there exists a counterpart in t l
b. But as discussed

above, often just a fraction of the computed time steps is stored, for
example the time steps that correspond to root level updates1.

In this case it is not obvious how to carry out the interpolation,
since in general there are no corresponding grid nodes in this situa-
tion. We may state the problem as follows:

Given sets of subgrids on refinements levels Λl(t l
a),Λ

l(t l
b)

with l = 0,1, ..., lmax at discrete time steps t l
a, t

l
b, with poten-

tially different topology, we need to generate a grid hierarchy
H (t), as well as an interpolated grid function f l(t) for an
intermediate time t ∈ [max

l
t l
a, min

l′
t l′
b]. 2

We will first discuss how the intermediate grid structure is gener-
ated. We make the following assumptions, which are usually ful-
filled for time-dependent AMR grids:

• The root level structure remains constant for all time steps,
and

• the spatial refinement factors between two consecutive levels
do not change in time.

In a first step, the refinement levels of the intermediate grid are
generated. This is done by merging the subgrids for each level of
the key frames:

Λ
l(t) = Λ

l(t l
a)∪Λ

l(t l
b).

By merging of corresponding levels, in general we loose the sub-
grid structure present in the key frame hierarchies, as illustrated in
Figure 5. The resulting collection of cells on each level could be
stored as an unstructured hexahedral grid with explicit connectivity
information. But in terms of memory efficiency and performance
it is advantageous to reintroduce a structure of disjoint subgrids on
these unions of cells, since many rendering algorithms, like for ex-
ample hardware-accelerated volume rendering, operate more effi-
cient on blocks with implicit connectivity.

So for each Λl(t) of the intermediate hierarchy H (t), we require
a partition into axis-aligned, non-overlapping rectangular subgrids
Γl(ti), such that Λl(t)⊆

⋃
i Γl

i(t).
This partition could be generated by computing the pairwise in-

tersection of the grids on Λl(t l
a) with the grids at Λl(t l

b), but this

1In order to allow a faithful interpolation of the data we assume that the
spatial and temporal sampling rate of the data is at least twice the bandwidth
of the signal, according to Shannons sampling theorem [33].

2The number of key-frames t l
i required for this depends on the order of

the interpolation function that is applied to obtain the associated grid func-
tion. In order to ease the notation we assume here that linear interpolation is
applied, compare Section 4.3. We further assume that the maximal refine-
ment level is the same for both times, which is no loss of generality, since
we can always generate additional levels for one of the time steps by pro-
jecting data from the next coarser levels, such that both hierarchies have the
same depth.

Figure 5: Top: Coarse grid and level 1 subgrids of two key frames.
Bottom: Coarse grid and level 1 union of subgrids for intermediate
time steps (created by merging corresponding level l subgrids of
each key frame).

might result in a large number of small, degenerated grids. In a sec-
ond step one could do some post-processing to merge smaller grids
to larger ones.

We decided to utilize a clustering algorithm published by
Berger [6]. Besides the fact that it generates efficient partitions
in terms of the number of grids, it has the further advantage that
the resulting grids are arranged in a kD-tree style. This is benefi-
cial for visualization algorithms like direct volume rendering, since
the kD-tree allows an efficient processing of the separate grids in a
view-consistent order, see [18]. We will briefly describe the basic
ideas of the clustering in the next section, for more information the
reader may refer to [6].

4.1 A Clustering Algorithm

Assume that the information about which cells are selected for clus-
tering is encoded by the binary function

Sl(i, j,k) =

{
1, if Ωl

i jk is marked for clustering
0, otherwise.

In a first step the number of cells that need refinement is computed
for each slice perpendicular to the three major coordinate planes
and stored in so called signature lists.

A two dimensional example is shown in Figure 6 (a). In the
next step exterior zero-entries in these lists are detected and pruned
off in order to place a minimal bounding box around the marked
cells, as shown in Figure 6 (b). Any interior zero entry in these
lists indicates a potential splitting index, i.e. a position at which
the given volume is subdivided into two smaller subregions. If all
signatures are non-zero, the second derivative of each signature list
is computed and the largest inflection point is chosen as the splitting
plane, compare Figure 6 (c). This procedure is repeated recursively
on the newly created subregions until one of the following halting
criteria is satisfied:

• The subregion exceeds the efficiency ratio, i.e. the ratio of the
number of cells tagged for clustering to its total number of
cells is greater than a preselected threshold.

• Further subdivision of the region would result in grid dimen-
sions smaller than some minimal extension.

(a) (b) (c)

Figure 6: 2D example of the clustering procedure: (a) In a first step
the signature lists are computed. (b) Exterior rows and columns with
zero entries are pruned off. (c) Interior zero entries and inflection
points indicate splitting edges.

4.2 Application of the Clustering Algorithm

In a first step the cells that are contained in the root level Λ0(t) of
H (t) are clustered via this algorithm, yielding a set of axis-aligned
subgrids Γ0

i (t). In principle the clustering could also be applied di-
rectly for refined levels, but this would result in high computational
efforts for computing the signature lists, since the number of the
cells contained in the minimal bounding box enclosing the higher
resolved levels can grow exponentially.

Thus we perform the clustering procedure recursively on each
newly created subgrid rather than for the whole level at once. That
is for each subgrid Γ0

i (t) only the cells Ω1
i jk on the first level of

refinement Λ1(t) that are contained in the bounding box of Γ0
i (t)

are clustered. This procedure is recursively repeated for each of the
subgrids on Λ1(t), until all levels are processed. By this procedure
we obtain an AMR hierarchy H (t) that consists of nested, disjoint
structured subgrids.

4.3 Temporal Interpolation of Grid Functions

Next the grid functions f l(t) : Λl(t)→ R associated with the inter-
mediate grid hierarchy H (t), are constructed. Two cases must be
distinguished for each cell Ωl

i jk ∈ Λl(t):

Ω
l
i jk ∈ Λ

l(t l
a)∩Λ

l(t l
b) or Ω

l
i jk /∈ Λ

l(t l
a)∩Λ

l(t l
b).

In the first case the data values associated with Ωl
i jk(t) can simply

be computed from the set of grid functions at t l
a and t l

b, see discus-
sion below. In the second case, in at least one of the given levels
Λl(t l

a) or Λl(t l
b) no corresponding cell on the refinement level l ex-

ists. In order to obtain a function value for these nodes, we inter-
polate the grid function on the (already processed) grid on the next
coarser level of resolution Λl−1(t). We currently support constant
interpolation for cell-centered data and tri-linear interpolation for
vertex-centered data.

We employ two different temporal interpolation schemes. The
first one is C0-continuous piecewise linear interpolation. The sec-
ond one is C1-continuous cubic Hermite interpolation. So besides
the function values for ts and ts+1, also the first derivative at these
time steps contributes to the interpolant

f l
i jk(t) := f l

i jk(t
l
a)H3

0 (t) +
(d

dt
f l
i jk(t

l
a)

)
H3

1 (t)+

f l
i jk(t

l
b)H3

2 (t) +
(d

dt
f l
i jk(t

l
b)

)
H3

3 (t).

{H3
0 , ...,H3

3 } denote the cubic Hermite Polynomials. In case the first
derivatives of the grid functions are not available during the visual-
ization phase, we approximate these by the slope of the quadratic
polynomials through ta, resp. tb and the preceding, resp. succeeding
time step.

This implies that we require the grid function values at four suc-
cessive time steps in order to obtain an approximation of the first
derivatives at ta and tb.

In a last step the data on the coarser levels must be updated by the
filtered data from the higher resolved levels. This is necessary since
the sampling rate on the refined levels is higher and therefore data
on these levels can resolve features, that are not captured correctly
in the interpolation on the corresponding coarser representation of
this region. Currently the grid generation process is carried out on-
the-fly, but parts of it could be done in a preprocessing step.

5 REMOTE DATA ACCESS

The presented algorithms were implemented using partial file ac-
cess to a local file. In a second step the visualization application
was distributed.

As discussed in Section 2, image-streaming does not deliver suf-
ficiently high frame-rates. Remote file access, as e.g. discussed in
[28], utilizes only a small fraction of the available network band-
width; especially if latency becomes large.

Our distribution decision was determined by two major goals:
simplicity and minimization of the number of network round-trips.
We decided to distribute the application based on the remote pro-
cedure call (RPC) paradigm, i.e. replacing local function calls by
synchronous request-response calls to a server.

BeginGetData(t)

[for all blocks]

GetData(t)

ServerClient
GetMetaData

Client Server
GetMetaData

SetupPipe

DataBlock

Figure 7: Sequence diagrams for the simple (left) and advanced
(right) client/server. The simple server returns the intermediate grid
hierarchy and all interpolated data in the response to GetData(t). The
advanced server returns only the intermediate grid hierarchy as a re-
sponse to BeginGetData(t). Interpolated data samples are delivered
as asynchronous one-way DataBlock messages.

In a following step, described below, we reduced the size of the
initial server response by delivering large parts of the response out-
side the RPC message as a stream of binary data blocks. We use the
gSOAP toolkit [37] to generate stubs for client/server SOAP calls.
SOAP is an XML-based RPC standard using HTTP as its transport
layer [35]. It is commonly associated with ‘web services.’

In order to visualize remote AMR data, two major options are
available for distributing the application: to carry out the grid gen-
eration and interpolation procedure on the remote side and transfer
the resulting intermediate hierarchy, or to transfer the keyframes of
the data first, and perform the interpolation on the local visualiza-
tion client.

This decision depends on whether it is more important to mini-
mize bandwidth usage or interpolation time. Based on the fact that
in our setting, it takes more time to transfer data than to execute the
interpolation we decide to minimize overall data transfer over the
network.

When a user inspects a new data set for the first time and wants
to get an impression of the overall temporal evolution of the data
typically only a small number of time steps compared to the total

Figure 8: Two key frames and an interpolated intermediate frame generated from data set I, a galaxy-formation simulation, via texture-based
volume rendering.

number of time steps in the file is requested and the distance be-
tween time steps is larger than the distance between two root level
updates. In this case the bandwidth requirements are smaller if the
interpolation is carried out on the remote side.

In a first request, the client asks for meta data about the data set,
like the bounding box, data type, and available time range. The re-
maining session consists of requests for hierarchies at certain times.
The server performs all required processing and delivers a grid with
interpolated data for the requested time.

In the simple version of the server all the interpolated data sam-
ples are included in the SOAP response (see Figure 7). This results
in large SOAP messages that may take long to be returned to the
client. The client blocks until all data for the requested time step
has been received. Most of the response is made up of the binary
samples of the grid function, whereas the description of the grid
hierarchy requires only a small percentage of the message.

In our current version, the sample data is replaced by an identifier
in the SOAP message and delivery is deferred until after the RPC
returned (see Figure 7). Since the RPC response only contains the
description of the hierarchy the remote call will return much faster.
The blocks are then delivered through a dedicated pipe transporting
one-way messages [27].

While we are currently using TCP, this separation will also allow
us to easily add new and useful protocols like SABUL/UDT [12] or
special protocols for dedicated networks, like Reliable Blast UDP
[14] or TCPXX [32].

The client displays the AMR hierarchy right after the RPC re-
turned. Data samples are filled in asynchronously as they arrive.
Regions for which higher resolution data is expected can be high-
lighted as the full AMR hierarchy is available. This may be useful
information to warn the user from drawing conclusions based on
low resolution data. Interpolated data on these levels may be mis-
leading (as discussed at the end of Section 4 At any time, the client
can initiate a request for another point in time. Such a request trig-
gers on the server side a cancel of the transfer of pending blocks
from the last request. Thus, a user can change the requested time
step before the data has been completely transferred and network
resources are not wasted.

In both versions of the server, only one network round-trip is re-
quired per request and delivery of a hierarchy at a certain time.3 As
a consequence, the network bandwidth can be fully utilized during
delivery of the hierarchy.

6 RESULTS

The algorithms have been implemented as extensions to Amira
[36], an object-oriented, expandable 3D data visualization sys-

3The use of HTTP Keep-Alive avoids per-request connection setup.

tem developed at ZIB. We applied the algorithm to different time-
dependent AMR data sets.

We tested the performance of the grid generation and interpola-
tion operation for two local files stored on a SGI Onyx3 on a single
500 MHz MIPS R14000 processor. Data set I is a result from a cos-
mological simulation of the formation of stars in the early universe
with a root grid resolution of 1283 cells, 8 levels of refinement and
about 2000 grids per time step. Data set II depicts a supernova ex-
plosion with 8 levels of refinement and about 1600 grids per time
step. We took 10 data dumps and generated 8 intermediate frames
for each pair using both linear and Hermite interpolation, with esti-
mated first derivatives, see Section 4.3. Figure 8 and 9 show some
volume rendered images of the sequences.

Details about performance and memory requirements are shown
in Figure 10. Since four key frames need to be merged for the Her-
mite interpolation the amount of additional memory requirements
and the times for grid generation were highest. The space increase
introduced by the merging procedure was about 7 % and 15 % for
the examples. The middle column depicts the times for grid gener-
ation. Again it was highest for the Hermite interpolation, but it was
less than 7 seconds even for the 2000 grid data set. This amount of
time is acceptable for on-the-fly generation during the visualization
phase.

We performed network measurements between ZIB, Berlin, Ger-
many and LSU, Baton Rouge, USA. The machines we used were a
3.2 GHz single-processor P4, 1.5 GByte RAM, 160 GB 7200 rpm
HDD at LSU as the server and a Dual 2.0 GHz AMD Opteron 246 at
ZIB as the client. The network round-trip time was approximately
150 ms. An untuned TCP connection delivered between 5–6 MByte
per minute (measured with Iperf [15]).

We used one scalar quantity stored in a HDF5 file of 22 GBytes
size. The AMR hierarchy, interpolated at a certain time, consists of
roughly 5.5 MBytes of data stored on approximately 600 subgrids.

We measured two values that we consider useful for giving an
impression on how our system performs. After selecting a time
step, it took 1–3 seconds to send the request, load and process the
data on the server, and send the hierarchy description back to the
client.4 The latency, until the hierarchy is returned to the client, is
mainly bound by loading and processing the data on the server. Lo-
cal access is not notably faster. Giving detailed numbers is difficult
as processing times vary depending on caching of the file system
and the HDF5 library.

After receiving the RPC response, the client starts displaying the
hierarchy and updates the display as the sample data arrive. All bi-
nary samples were fully received after 60–75 seconds. Compress-
ing the data sent through the binary channel, using standard zlib
compression, resulted in only a 5% decrease in total data size. Our

4We used gSOAP’s integrated zlib compression of XML messages.

Figure 9: Three interpolated frames from data set II, a simulation describing a supernova explosion visualized by texture-based volume rendering.

increase grid generation interpolation
Data I (linear) 7% 3.4 sec 0.2 sec
Data I (Hermite) 12% 6.6 sec 0.8 sec
Data II (linear) 11% 2.2 sec 0.1 sec
Data II (Hermite) 15% 3.5 sec 0.3 sec

Figure 10: The first column denotes the increase in the number of
cells for the intermediate time steps relative to the given key frames.
The second column states the times for generating the intermediate
grid. The right column gives the time for interpolation of the interme-
diate grid function.

application uses the full available bandwidth that was measured by
Iperf.

7 CONCLUSIONS

In this paper we addressed the problem of visualizing remote, time-
dependent data defined on AMR grids. In order to handle the prob-
lem of varying grid topology during time evolution, intermediate
grid hierarchies are generated by merging the grids on the corre-
sponding refinement levels. In a second step a nested grid structure
is induced, employing a clustering algorithm. Finally the grid func-
tions can be mapped to the intermediate hierarchy and interpolated
using conventional schemes like linear or Hermite interpolation.

We use remote procedure calls (RPC), implemented as SOAP
messages, to distribute the application using a client/server model.
The RPC paradigm allows to easily distribute an application at any
function call. Choosing a high-level call to minimize the number
of network round-trips is crucial to efficiently utilize a high-latency
network. In our case round-trips only occur when the requested
time is changed. By separating the bulk data transfer from the
AMR hierarchy description and transferring sample data in an asyn-
chronous binary stream, we are able to achieve low response times
in the RPCs; the separated binary stream utilized the full network
bandwidth of a TCP connection.

We consider it sufficient for an interactive application to deliver a
first response to parameter changes, for example selection of a time
step, within seconds, and a complete result within minutes, while
always sustaining a high update rate of the rendered image when
changing the view point. Under these assumptions, the size of data
that can be displayed by our application is either limited by the net-
work bandwidth, the amount of data transferred within minutes, or
by the capability of local hardware to handle the data. With in-
creasing data size, or with low-capacity networks image streaming
or image based rendering methods may become the only available
option for visualization. Interactivity is then restricted by the net-

work latency. But as long as the network is fast enough and local
resources are capable of handling the data, we believe that using
remote data access is the best way to build a remote visualization
application if interactivity is a major concern.

8 FUTURE WORK

For larger hierarchies it might be beneficial to carry out parts of the
grid generation in a preprocessing step. It is unfeasible in general
to store a merged grid for each time data is updated on the highest
resolved level. Alternatively one could generate two sets of grids
per time step for a each refinement level, such that for each inter-
mediate time the interpolation of data can be carried out on corre-
sponding subgrids. The first part could be done in a preprocessing
step, whereas the second one has to be carried out on the fly.

The binary data transport layer could be replaced by network
protocols that are optimized for high bandwidth over large distances
or for optical networks. It could also be extended to receive data
blocks from more than one source, which may be a scenario in
Grid or Cluster Computing. We plan to investigate these points in
the future. We further plan to allow the user to reduce the amount
of transmitted data by requesting only those subgrids that are con-
tained in some region of interest.

9 ACKNOWLEDGMENTS

We thank Tom Abel (Stanford University), Stuart Levy (National
Center for Supercomputing Applications) and Greg Bryan (Univer-
sity of Oxford) for providing the cosmological data sets and for
fruitful discussions. The black hole collision data set was computed
by Ryoji Takahashi (Louisiana State University). Special thanks to
Charlotte Fruge (Louisiana State University) for proof-reading the
manuscript. This work was supported by the Center for Computa-
tion Technology at LSU.

REFERENCES

[1] T. Abel, G. Bryan, and M. L. Norman. The formation of the first star
in the universe. Science, 295, issue 5552:93–98, 2002.

[2] W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, I. Foster,
C. Kesselman, S. Meder, V. Nefedova, D. Quesnel, and S. Tuecke.
Data management and transfer in high performance computational
grid environments. In Parallel Computing Journal,28(5), pages 749–
771, 2002.

[3] A. S. Almgren, J. B. Bell, P. Colella, and T. Marthaler. A Cartesian
grid projection method for the incompressible Euler equations in com-
plex geometries. SIAM Journal on Scientific Computing, 18(5):1289–
1309, 1997.

[4] C. Baru, R. Moore, A. Rajasekar, and M. Wan. The SDSC Storage
Resource Broker. Proc. CASCON’98, Toronto, Canada, 1998.

[5] M. J. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic
partial equations. Journal of Computational Physics, 53:484–512,
1984.

[6] M. J. Berger and I. Rigoutsos. An algorithm for point clustering and
grid generation. IEEE Transactions on Systems, Man and Cybernetics,
21(5), 1991.

[7] W. Bethel, B. Tierney, J. lee, D. Gunter, and S. Lau. Using high-speed
wans and network data caches to enable remote and distributed visu-
alization. In Proc. IEEE Supercomputing ’00, page 28, Washington,
DC, USA, 2000. IEEE Computer Society.

[8] M. D. Beynon, R. Ferreira, T. Kurc, A. Sussman, and J. Saltz. Dat-
aCutter: Middleware for filtering very large scientific datasets on
archival storage systems. In Proc. Mass Storage Systems, pages 119–
133. IEEE Computer Society Press, Mar. 2000.

[9] G. L. Bryan. Fluids in the universe: Adaptive mesh refinement in cos-
mology. Computing in Science and Engineering, 1(2):46–53, 1999.

[10] I. Foster, D. Kohr, Jr., R. Krishnaiyer, and J. Mogill. Remote I/O: Fast
access to distant storage. In Proceedings of the Fifth Workshop on
Input/Output in Parallel and Distributed Systems, pages 14–25, San
Jose, CA, 1997. ACM Press.

[11] J. Gallagher, N. Potter, T. Sgouros, S. Hankin, and G. Flierl. The data
access protocol—DAP 2.0, 2004.

[12] Y. Gu, X. Hong, and R. L. Grossman. Experiences in design and im-
plementation of a high performance transport protocol. In Proceedings
of the ACM/IEEE SC2004 Conference (SC’04), page 22, November
2004.

[13] T. Happe, K. Polthier, M. Rumpf, and M. Wierse. Visualizing data
from time-dependent adaptive simulations. In Proceedings of the
Workshop on ‘Visualization - Dynamics and Complexity’, 1995.

[14] E. He, J. Alimohideen, J. Eliason, N. K. Krishnaprasad, J. Leigh,
O. Yu, and T. A. DeFanti. Quanta: a toolkit for high performance
data delivery over photonic networks. Future Gener. Comput. Syst.,
19(6):919–933, 2003.

[15] Iperf documentation. http://dast.nlanr.net/Projects/Iperf/.
[16] T. J. Jankun-Kelly, O. Kreylos, J. M. Shalf, K.-L. Ma, B. Hamann,

K. I. Joy, and E. W. Bethel. Deploying web-based visual explo-
ration tools on the grid. IEEE Computer Graphics and Applications,
23(2):40–50, 2003.

[17] R. Kähler, D. Cox, R. Patterson, S. Levy, H.-C. Hege, and T. Abel.
Rendering the First Star in the Universe - A Case Study. In R. Moor-
head, M. Gross, and K. I. Joy, editors, Proceedings of IEEE Visualiza-
tion, pages 537–540. IEEE Computer Society Press, 2002.

[18] R. Kähler and H.-C. Hege. Texure-based Volume Rendering of Adap-
tive Mesh Refinement Data. The Visual Computer, 18(8):481–492,
2002.

[19] R. Kähler, M. Simon, and H.-C. Hege. Fast Volume Rendering of
Sparse Datasets using Adaptive Mesh Refinement. IEEE Transactions
on Visualization and Computer Graphics, 9(3):341–351, 2003.

[20] T. Kurc, Ü. Çatalyürek, C. Chang, A. Sussman, and J. Saltz. Visual-
ization of large data sets with the active data repository. IEEE Comput.
Graph. Appl., 21(4):24–33, 2001.

[21] J. Li, W.-K. Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp,
R. Latham, A. Siegel, B. Gallagher, and M. Zingale. Parallel netCDF:
A scientific high-performance I/O interface. In Proc. Supercomputing
Conference, Phoenix, Arizona, Nov. 2003.

[22] S. L. Liebling. The singularity threshold of the nonlinear sigma model
using 3D adaptive mesh refinement. Class.Quant.Grav., 21(3995),
2004.

[23] K. Mueller, N. Shareef, K. Huang, and R. Crawfis. Ibr-assisted volume
rendering. In Proc. IEEE Visualization 2000, Late Braking Hot Topics,
page 45, 2000.

[24] M. Norman, J. Shalf, S. Levy, and G. Daues. Diving deep: Data-
management and visualization strategies for adaptive mesh renement
simulations. Computing in Science and Engineering, 1(4):22–32,
1999.

[25] S. Park, C. L. Bajaj, and V. Siddavanahalli. Case study: Interac-
tive rendering of adaptive mesh refinement data. In R. Moorhead,
M. Gross, and K. I. Joy, editors, Proceedings of IEEE Visualization,

pages 521–524. IEEE Computer Society Press, 2002.
[26] K. Polthier and M. Rumpf. A concept for time-dependent processes.

In M. Göbel, H. Müller, and B. Urban, editors, Visualization in Scien-
tific Computing, pages 137–153. Springer Verlag, Berlin, Heidelberg,
New York, 1994.

[27] S. Prohaska and A. Hutanu. Remote data access for interactive visu-
alization. In 13th Annual Mardi Gras Conference: Frontiers of Grid
Applications and Technologies, pages 17–22, 2005.

[28] S. Prohaska, A. Hutanu, R. Kähler, and H.-C. Hege. Interactive explo-
ration of large remote micro-CT scans. In Proc. IEEE Visualization
’04, pages 345–352. IEEE Computer Society, 2004.

[29] T. Richardson, Q. Stafford-Fraser, K. R. Wood, and A. Hopper. Virtual
network computing. IEEE Internet Computing, 2(1):33–38, Jan./Feb.
1998.

[30] T. Schmidt and R. Rühle. On-line visualization of arbitrary unstruc-
tured, adaptive grids. In Proceedings of Sixth Eurographics Workshop
on Visualization in Scientific Computing, pages 25–34. Springer, 1995.

[31] E. Schnetter, S. H. Hawley, and I. Hawke. Evolutions in 3D numer-
ical relativity using fixed mesh refinement. Class. Quantum Grav.,
21(6):1465–1488, 2004.

[32] J. Shalf and W. Bethel. Cactus and Visapult: An Ultra-High Perfor-
mance Grid-Distributed Visualization Architecture Using Connection-
less Protocols. In IEEE Computer Graphics and Applications, volume
23(2), pages 51–59, March/April 2003.

[33] C. E. Shannon. Communication in the presence of noise. Proc. Insti-
tute of Radio Engineers, Vol. 37, No. 1, pages 10–21, 1949.

[34] Silicon Graphics, Inc., 1600 Amphitheatre Pkwy, Mountain View,
CA 94043, United States. OpenGL Vizserver 3.1 White Paper -
Application-Transparent Remote Interactive Visualization and Col-
laboration, Apr. 2003.

[35] SOAP specifications. http://www.w3.org/TR/soap/.
[36] D. Stalling, M. Westerhoff, and H.-C. Hege. Amira: A highly in-

teractive system for visual data analysis. In C. D. Hansen and C. R.
Johnson, editors, The Visualization Handbook, pages 749–767. Else-
vier, 2005.

[37] R. van Engelen and K. Gallivan. The gSOAP toolkit for web services
and peer-to-peer computing networks. In CCGRID, pages 128–135,
2002.

[38] G. H. Weber, O. Kreylos, T. J. Ligocki, J. M. Shalf, H. Hagen,
B. Hamann, and K. I. Joy. Extraction of crack-free isosurfaces from
adaptive mesh refinement data. In Data Visualization 2001 (Proceed-
ings of VisSym ’01), pages 25–34, 2001.

[39] G. H. Weber, O. Kreylos, T. J. Ligocki, J. M. Shalf, H. Hagen,
B. Hamann, and K. I. Joy. High-quality volume rendering of adap-
tive mesh refinement data. In Proceedings of Vision, Modeling, and
Visualization 2001, pages 121–128, Stuttgart, Germany, 2001.

[40] G. H. Weber, M. Oehler, O. Kreylos, J. M. Shalf, W. Bethel,
B. Hamann, and G. Scheuermann. Parallel cell projection rendering of
adaptive mesh refinement data. In A. Koning, R. Machiraju, and C. T.
Silva, editors, Proceeding of the IEEE Symposium on Parallel and
Large-Data Visualization and Graphics, pages 51–60, Los Alamitos,
California, 2003. IEEE, IEEE Computer Society Press.

