
Remote Data Access for
Interactive Visualization

Steffen Prohaska
Zuse Institute Berlin

prohaska@zib.de

Andrei Hutanu
Center for Computation and Technology, Louisiana State University

ahutanu@cct.lsu.edu

In the contribution to the conference, we describe some requirements for a remote
data access interface suitable for interactive visualization—and we developed a
prototype.

Goals

I’ll start describing the goals of this work.

Goals

Exploratory visualization
“undirected search”

Remote visualization

Different kind of data sources
Persistent data, e.g. stored data set
Transient data, e.g. running simulation

Data on structured grids

The targeted application area is ‘Exploratory Visualization’. No prior knowledge of
the data is assumed. The task is to explore data to understand what’s in it.
Interactive tools, which let the user conduct this undirected search are required.
The data shall be located remotely and accessed through a network.
This is useful for different kinds of data. Data sets of persistent nature might be
stored centrally in data repositories. Running simulations might also be another
source. The transient nature of these should be taken into account.
In our work, we only deal with structured grids. Simply spoken, data is organized as
multidimensional arrays. But we believe that the general framework can also be used
for other data types.

Exploratory Visualization

Interactive

Response times are critical

Visualization parameters may be changed at
any time

‘Exploratory Visualization’ requires interactivity.
A user should be able to control the application at any time. This requires some
guarantees on response times. Interaction at any time also requires the application to
deal with changing parameters at any time. Previously requested data might become
unnecessary.

Remote Visualization

Latency
blocking
utilization of bandwidth
how to cancel?

Packets
unreliable
out-of-order

A network introduces specific problems that make it hard to build such an
application.
The network introduces latency, which can differ in orders of magnitude. If no care is
taken, this might lead to blocking behavior and insufficient utilization of network
bandwidth. How to cancel previous requests might also be an issue.
A packet network might deliver data unreliably or out-of-order. Hiding this nature by
abstraction layers is useful but might influence efficient utilization of the network.

Data Sources

Persistent data
stored in data repository
preprocessing step possible

Transient data
limited buffer size
unreliable
e.g. running simulation, sensors

Our data sources may be of persistent or transient nature.
Persistent data can be preprocessed to generate for example a multi resolution
representation. They may be repeatedly and reliably accessed.
Transient data sources on the other hand side, might be available only at a certain
point in time. They might deliver partial results caused by limited buffer sizes or
other restriction in resources. It might for example be unwanted to stop a running
simulation completely until a remote data request is served.

Use Cases

The next few slides will present some visualization use cases.

Use Cases

Hardware based volume rendering

Orthogonal slicing

Retrieval of sub-blocks

I’m going to cover volume rendering, slicing and simple retrieval of sub volumes.

Volren, Persistent Data

Priority around focus point

Limited by memory budget

Visualization updated as data is received

0 1 2 3

send

request

render

We assume a hierarchical volume renderer based on graphics hardware.
Data are requested in blocks at multiple resolutions with a higher priority around a
focus point. An octree is built up until a memory budged is used. As new data
becomes available, the visualization is updated.
A data set should be stored at several resolutions to allow efficient delivery of the
requested data. This can be easily achieved for persistent data in a preprocessing
step.

Volren, Transient Data

render
send some data

request

Data Source

send some data

request

render

tim
e

A transient data source might deliver only partial results.
And each request might deliver different results, if the source is changing over time.
Nonetheless, displaying such data can be useful. For example the evolution of a
running simulation might be monitored. That would allow to decide if it should be
continued or be aborted.

Slice

Request multiple, increasing resolutions

0 1 2 3

send

request

send

send

Slicing is similar in nature, it only requires a different kind of selection in the data.
The request consists of a certain slice that should be delivered at increasingly higher
resolutions.

Retrieval of Sub-Volume

User selected sub-volume

0 1 2 3

send

request

store

Retrieval of user specified sub volumes is the last scenario.
The user selects the volume and resolution she’s interested in. This part of the data
will be sent and stored to a local disk for further processing.
This concludes the section about use cases.

Solution

I’ll move on to our solution.

Solution

XML SOAP to pass high level requests
here ‘Hyperslab’ descriptions

Binary pipe to deliver blocks of data to client
Different types might be useful
Simple prototype based on TCP socket

We split the problem into two major tasks.
The first task is to pass high level descriptions from the client side to the server. In
our case, these are hyperslabs, describing the selection in the data. I’ll present more
details shortly. For other visualization techniques, the description needs to be
replaced. We use SOAP to pass requests, because it is a standardized remote
procedure call interface and is rather simple to implement.
The second task is to deliver data back to the client. This needs to be done
efficiently. We propose to use a binary pipe that must be able to deliver data blocks
tagged with an id. It should also provide an efficient mechanism to cancel operations,
flush previously requested data and restart with new requests. Different
implementations can be useful. Today, I’ll present a prototype based on a TCP
socket.

Create Filter Map Render Display

Raw Data Features Geometry Images

Visualization Pipeline

Visualization can be understood as a pipeline of tasks to generate the final image.
The ‘Visualization Pipeline’ describes the process of generating visual
representations of data. From left to right:
data is created and passed as raw data to a stage, which filters it to extract features.
These are then mapped to some geometry or texture, which is rendered to generate
an image displayed on a screen.

Create Filter Map Render Display

Raw Data Features Geometry Images

Visualization Pipeline

Subvolume

ClientServer
Network

We split the pipeline as displayed in this slide. The server creates a filtered version of
the data. These ‘Features’ are passed to the client which utilizes local hardware to
generate a geometry and render an image.
The subvolume and resolution need to be specified to the filter stage.

Hyperslab

Specified at full resolution

start, stride, size

start (1,1)
stride (2,3)
size (4,3)

We looked through a variety of data access interfaces. For a detailed list I would like
to refere you to our paper.
A common concept when dealing with multidimensional arrays is the hyperslab. A
hyperslab describes a regular selection in a multidimensional array by specifying a
starting point, the number of elements to advance to reach the next selected element
—denoted as ‘stride’—and the number of selected elements in each direction. We use
this description to pass our requests. We always specify the hyperslab at the full
resolution of the data set.

Subsampling Downsampling

start (1,1)
stride (2,4)
size (4,2)

start (1,1)
stride (2,4)
size (4,2)

A data source might provide low resolution data by either using subsampling or
downsampling. The description of the hyperslab stays the same. Downsampling
should be implemented to avoid aliasing, but subsampling might be easier to
achieve. Details of the available mechanisms can be passed during session setup. I’ll
skip them here.

Data Flow

GenDat

Client

Server Network

GUI

gSOAP

ReadyQ

ReqQ

RecvQ

Pipe

Vis

SendQ

Pipe

gSOAP

ReqQ

Such requests flow through our application until they are final passed to the
visualization layer. The high level data flow is displayed in this slide.
I’ll first describe session setup, followed by the handling of a standard request and a
cancel operation. All the details of the diagram will be visited shortly.

Session Setup
Client

Server Network

GUI

gSOAP

PipePipe

gSOAP
Connect

Pipe Loc

2

3

4

5

1

The first step is session startup.
The client submits a connect request, at (1). The server creates the End Point of pipe
a pipe, see (2), and passes the required information to connect to the endpoint back
to the client, at (3). Information is passed using SOAP. Meta data about the data set
are also passed to the client.
The client uses this information to connect the pipe, at (4), and present the data set
to the user, see (5).

Request

GenDat

Client

Server Network

GUI

gSOAP

ReadyQ

ReqQ

RecvQ

Pipe

Vis

SendQ

Pipe

gSOAP

ReqQ

23

4

5 6

7

1

Client

Server

The user can now interact with the data set
Starting at (1), a user interaction creates a request that is placed in the Request
Queue (ReqQ). An id is attached to each request. At (2) the request is sent to the
server as a SOAP request. At the same time, it is placed in the Receive Queue—at the
middle right—containing pending requests. At (3), the server receives the request
and places it in Request Queue. Data is generated at (4), attached to the request,
which is then placed in the Send Queue.
At (5), the binary pipe sends the data to the client. The client receives the data block
at (6), compares it with pending request in the Receive Queue and places it into the
Ready Queue (ReadyQ). A notification is send to the application about newly available
data and the Visualization is updated at (7).
Multiple requests might be generated by a user interaction. They may be send as an
array of requests to the server.

Cancel

GenDat

Client

Server Network

GUI

gSOAP

ReadyQ

ReqQ

RecvQ

Pipe

Vis

SendQ

Pipe

gSOAP

ReqQ

2

34

5

1

Client

Server

After a user interaction, already requested data might become unnecessary and need
to be canceled.
This process is displayed here. At (1), a user interaction triggers cancel; all local
queues and the pipe is canceled at (2). At (3), the cancel request is sent to server and
received at (4). The server executes the request at (5).
Note that new request may be already queued, before the cancel request is
completely processed.

gSOAP

I’ll now present in more depth, how we implemented the SOAP layer and our
prototype of a binary pipe. We use gSOAP.

gSOAP

Light weight SOAP server

C-like declarations

Preprocessor generates C-function decls and
efficient SOAP parser (and XML Schema)

Streaming, DIME, keep-alive

www.cs.fsu.edu/~engelen/soap.html

gSOAP provides a light weight SOAP server, which is automatically generated from C-
like declarations. A preprocessor generates an efficient SOAP parser and C-function
declarations that need to be implemented.

gSOAP
struct ns__dataspace {
 int __size1 1:6;
 int *dims;

 int __size2 1:6;
 int *start;

 int __size3 1:6;
 int *size;

 int __size4 1:6;
 int *strides;
};

struct ns__response {
 unsigned int transactionid;
};

int ns__request (
 /* struct soap* soap , */
 struct ns__dataspace selection
 , int blockid
 , struct ns__response* result);

<!-- SOAP headers cut -->
<request xmlns="example.org">
 <selection xsi:type="dataspace">
 <dims>2</dims>
 <dims>2</dims>
 <dims>2</dims>
 <start>0</start>
 <start>0</start>
 <start>0</start>
 <size>2</size>
 <size>2</size>
 <size>2</size>
 <strides>1</strides>
 <strides>1</strides>
 <strides>1</strides>
 </selection>
 <blockid>0</blockid>
</request>

<!-- SOAP headers cut -->
<response xmlns="example.org">
 <transactionid>0</transactionid>
</response>

2

3

1

One small example to give a sense of this process. On the left side, you can see the
declaration of a SOAP call.
gSOAP handles namespaces by a simple naming convention. Two underscores in a C
symbol are used to indicated a namespace, see (1). At (2), a dynamic array with a
restricted size between 1 and 6 is declared. gSOAP handles all the memory allocation
and bounds checking. A function for each call needs to be implemented. It is
declared at (3). gSOAP adds a pointer to an internal data structure.
On the right hand side, part of the mapping to a SOAP request is shown. All these
details are handled by gSOAP.

TCP Pipe

I’ll now move on to our binary pipe prototype.

TCP Pipe

Nonblocking sockets

Data blocks divided in frames

It is based on TCP and we use nonblocking sockets to implement it.
Each data block is sent in multiple parts, as I will show now.

Frames

Network

Sender

Socket Socket

Receiver

id, size, more id, size, more

idid

At the sender, a block is split in frames. Each frame is tagged with the id of the
block, the frame size and a flag indicating if more frames will follow. The sender
sends frame by frame, the receiver fills a buffer as frames are received.

Next Frame

Network

Sender

Socket Socket

Receiver

id, size, last id, size, more

idid + 1

2

1

At some later point in time, the last frame is sent. It is tagged with a last flag, see (1).
The next block with id + 1 is brought into the sent buffer, at (2)

Next Frame

Network

Sender

Socket Socket

Receiver

id, size, last

idid + 1

This last frame is received on the client and delivered to the visualization as
discussed before.

Cancel

Network

Sender

Socket Socket

Receiver

id + 1, 0, last

id id + 1

id,…

1

2

3

I continue the discussion explaining how to cancel operations on the pipe. I’ll use a
more complicated situation now. Here, one block is not yet completely received while
the next block is already partially sent.
A cancel request is handled the following way. Instead of sending more frames, an
empty frame, with the last flag set, is sent, see (1), and the sender buffer is
discarded, at (2). The empty frame, with the last flag set, clearly indicates a canceled
block. But there’s another complete block on the network, at (3), which will be
received earlier.

Cancel

Network

Sender

Socket Socket

Receiver

id + 1, 0, last

id id + 1

id,…

Now, the last frame of this block is received, but should be discarded on the client
side.
This is achieved in the following way.

Network

Sender

Socket Socket

Receiver

id + 1, 0, last

id

id,…

Cancel
Client

Server

ReadyQ

RecvQ

PipePipe

Client

Server

if id < threshold:
 delete block
else:
 deliver block to ReadyQ

2

Cancel
set threshold

0

To understand this, I’ll show the context in the overall data flow. The two pipe end
points and two queues on the client side are displayed here.
Earlier during the cancel operation, at (0), the client set a threshold on the ids. Blocks
below this threshold are silently deleted by the receive end point of the pipe. As all
the block ids are issued by the client, it knows this threshold at any time.

Cancel Revisited

GenDat

Client

Server Network

GUI

gSOAP

ReadyQ

ReqQ

RecvQ

Pipe

Vis

SendQ

Pipe

gSOAP

ReqQ

2

34

5

1

Client

Server

Network

Sender

Socket Socket

Receiver

id + 1, 0, last

id

id,…

set th
reshold

Back to the diagram from above. It has become clear, how all the steps of such a
cancel operation will be executed.
This concludes the discussion of the TCP pipe.

Threads

GenDat

Client

Server Network

GUI

gSOAP

ReadyQ

ReqQ

RecvQ

Pipe

Vis

SendQ

Pipe

gSOAP

ReqQ

Client

Server

Thread

We implemented the different parts of the system in separated threads. The GUI and
the visualization run in one thread. gSOAP and the pipe end point on server and
client are separated threads, as well as the data generation on the server.

Wrap Up

To wrap up.

Summary

XML SOAP to send high level requests

Binary pipe to transport requested data

Fully asynchronous architecture

Efficient way to cancel pending requests

Prototype achieved 70% utilization of GigE

We developed a system that uses SOAP to pass high level requests between client
and server. The binary data associated with these requests are sent by a binary pipe.
I discussed a prototype implementation based on a simple TCP socket, but other
implementation might be plugged in. The architecture is fully asynchronous and is
able to efficiently cancel operations.
With our prototype we were able to consume 70% of the bandwidth of GigE running
the application in a local area network.

Future

Various types of pipes
unordered
many-to-one

Real world
Security
Integration into existing applications
e.g. Cactus?

Other visualization scenarios

We plan to implement or use various kinds of pipes.
As we discussed in the paper, it might be more efficient to deliver blocks without
fixed order. If might also be useful to connect a visualization client to more than one
server machine.
We would like to integrate our work into real world applications. This could require to
add security mechanism to session startup and data transfer.
Visualization scenarios for other data types and use cases are another point on our
agenda.

