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ABSTRACT

We present a fast and robust method for the alignment of image
stacks containing filamentous structures. Such stacks are usually
obtained by physical sectioning a specimen, followed by an opti-
cal sectioning of each slice. For reconstruction, the filaments have to
be traced and the sub-volumes aligned. Our algorithm takes traced
filaments as input and matches their endpoints to find the optimal
transform. We show that our method is able to quickly and ac-
curately align sub-volumes containing neuronal processes, acquired
using brightfield microscopy. Our method also makes it possible to
align traced microtubuli, obtained from electron tomography data,
which are extremely difficult to align manually.

Index Terms— Feature-based alignment, serial sections, point
matching, neurons, microtubuli.

1. INTRODUCTION

Physical sectioning combined with optical sectioning enables re-
searchers to image large tissue volumes at sub-micrometer resolu-
tion. Optical sectioning microscopy, e.g. using confocal laser scan-
ning or transmitted light brightfield microscopy, permits the three-
dimensional imaging of the internal structure of tissue by varying
the focal plane of the microscope. However, the resolution that can
be obtained is limited by the thickness of the tissue, because of light
scattering. Thick tissue can be imaged by first cutting the speci-
men into thin sections, which are mounted and optically sectioned
individually to produce a stack of thin, but three-dimensional sub-
volumes [1, 2]. When using electron tomography instead of light
microscopy, individual cells can be studied at even smaller scale [3].

To reconstruct the entire volume, the sub-volumes represent-
ing the physical sections have to be aligned, as the individual sec-
tions may have different positions and orientations on the micro-
scope slides. There are basically two different approaches to this
problem: image-based and feature-based alignment. Problems with
image-based alignment include imaging artifacts like noise, uneven
brightness and contrast, as well as the potentially large data sets
(multiple gigabytes per section). It is therefore often beneficial to
first extract features from the image data and perform the alignment
on the features. This is the approach taken in this paper.

We present an automatic method to align a pair of sub-volumes
containing filamentous structures. The problem can be described
more specifically as follows (see Fig. 1): given two sub-volumes S0

and S1 containing a potentially different number of line segments
(polylines), we are looking for a transform T which maps the end
points of segments in S1 onto the corresponding end points in S0 in
an optimal way. A prerequisite for computing T is the assignment
of correspondences between segments in both slices, for which a
solution is presented as well. We assume that enough corresponding
segments are available to find a correct match and that the slices have

Fig. 1. Problem: alignment of slices containing filaments

not been severly deformed beyond a rigid transform. We apply our
fast and robust method to neurons and microtubuli.

2. RELATED WORK

Many different methods exist for alignment based on image data di-
rectly and image-based feature descriptors [4]. Such methods how-
ever cannot be used in our case as our objects of interest are very
thin and difficult to distinguish, especially in noisy images.

In our case, the filaments are obtained by manual or automatic
tracing and the features to be aligned are the segment end points.
Several methods have been proposed to solve the challenge of si-
multaneous optimization of 1) point correspondences between two
point sets of possibly different size and 2) the transform with respect
to a particular objective function.

The Softassign Procrustes Matching Algorithm [5] solves this
problem by optimizing a non-linear objective function in which a
match matrix, encoding the point correspondences, is introduced
into the Procrustes distance function. Chui [6] extends this method
for non-rigid point matching. Bin Luo [7] also extends the Procrustes
analysis, but casts the problem into an Expectation Maximization
framework.

Bajcsy et al. [2] solved the problem in order to align segmented
extracellular matrix proteins and blood vessels contained in a stack
of Confocal Laser Scanning Microscopy sub-volumes. A rough ini-
tial transform is computed by finding a matching of segments with
similar cross-section area and similar distances between the cen-
troids. The transform is then optimized taking into account also
angular constraints. In [8], the transform for the found matching
is further optimized. A polynomial function is fit to the segments
and extrapolated onto a plane between the sub-volumes. The opti-
mal transform is then computed by minimizing position deviation of
the extrapolated points or by maximizing curve smoothness.

Characterization of molecule similarity, important in drug de-
sign, is another problem often posed as 3D-point matching [9, 10].
Kirchner [11] optimizes an objective function involving the fraction



of matched points and the root mean square distance (rmsd) between
matched points after transformation. He shows that there exists a
fully polynomial time approximation scheme (FPTAS) for this prob-
lem, which however runs in polynomial time of high degree.

3. MATCHING AND ALIGNING 2D POINT SETS

Of all methods methods mentioned above, we chose to use the point
matching approach of Baum [9] as a basis for the alignment of fila-
ment data, as it is fast, robust, flexible and straightforward to imple-
ment. In its original form, it computes the correspondence between
two 3D point sets of possibly different size and the rigid transform
that optimally maps one point set onto the other (in a least squares
sense). We extend it to the alignment of 2D point sets obtained from
traced filaments, describe how to incorporate an optional uniform
scaling in the transform and present some efficiency optimizations.

Given two sections containing multiple polylines, our method
computes an optimal transform, i.e. a rotation angle around the z-
axis, a 2D translation parallel to the xy-plane and an optional uni-
form scaling, using the following steps:

1. Find the sets of points P = {pi} from the first slice S0 and
Q = {qj} from the other slice S1, to be matched. We use the
line end points in the section boundary regions r0 and r1 re-
spectively (see Fig. 1) and obtain 2D point sets by orthogonal
projection onto the xy-plane. The region size is chosen as a
fraction of the total slice thickness: r0 = βd0, β ∈ (0, 1

2
].

2. Find a set of candidate matchings and compute a starting
transform for each matching.

3. For each starting transform, optimize the matching and trans-
form with respect to a scoring function. The result is the
transform corresponding to the optimal score.

3.1. Generating starting transforms

Given two point sets P = {pi} and Q = {qi},pi,qi ∈ R2, the
first step to find the optimal matching and the corresponding trans-
form, is to compute a set of candidate matchings.

A matching M defined on two finite sets P and Q is a bijective
function M : P̃ → Q̃, P̃ ⊆ P, Q̃ ⊆ Q. M can be written as a set
M∗ of pairs from P × Q with (p, q) ∈ M∗ ⇔ M(p) = q. The
number of pairs |M∗| will be referred to as the size of M .

Candidate matchings are found by looking at the Euclidean dis-
tances between point pairs. The goal is to find subsets of points in
P and Q that have the same spatial pattern, i.e. similar mutual dis-
tances. In particular, the goal is to find a matching M : P̃ → Q̃
such that the distance between each point pair (p′,p′′) in P̃ and the
distance of the corresponding point pair (q′,q′′) in Q̃ differ by no
more than a given distance threshold d:˛̨

‖(p′ − p′′)‖ − ‖(q′ − q′′)‖
˛̨
≤ d. (1)

If this condition holds for each point pair in P̃ , we say that M
is a d-bounded matching. The points in both sets then have a similar
positional pattern and M is thus considered a candidate matching.

The parameter d is data-dependent. It should be chosen small
for tracings obtained from tissue that was little deformed and larger
for more deformed specimens.

Usually, multiple d-bounded matchings exist. In order to find
them all, we use a method based on clique detection in the distance
compatibility graph (DCG). The vertices of this graph consist of all
(p′,q′) pairs. Thus, there are |P |·|Q| vertices. Two vertices (p′,q′)

and (p′′,q′′) are connected by an edge, if the matching M given
by M∗ = {(p′,q′), (p′′,q′′)} is d-bounded (see Eq. 1). A clique
in a graph is a subset of vertices that induce a complete subgraph,
i.e. each vertex in the subset is connected to all other vertices in the
subset. A clique is maximal when it is not part of any larger complete
sub-graph. In the following, we use clique to refer to a maximal
clique. We find all cliques (and thus all candidate matchings) using
the Bron-Kerbosch [12] algorithm.

For each candidate matching we compute a transform that min-
imizes the root mean square distance (rmsd) of the matched points.
The rmsd of two point sets P and Q with respect to a matching M
and a rigid body transform T is defined as:

rmsd(P,Q,M, T ) =

sP
(p,q)∈M∗ ‖p− T (q)‖2

|M∗| (2)

This transform is called the matching transform of M and can be
computed in O(|M∗|) time, using the algorithm described in [13].
The matching transforms of all candidate matchings are the starting
transforms serving as the input for the following optimization step.

3.2. Optimizing matching and rigid transform

In this step, we find the optimal matching M and transform T with
respect to a scoring function score:

score(P,Q,M, T ) =
|M∗|

min(|P |, |Q|) · e
−α·rmsd(P,Q,M,T ) (3)

The scoring function measures the number of matched points and
the root mean square distance of the matching points after transfor-
mation. Its range is [0, 1], where 1 corresponds to the best score.
The optimal score is achieved when all points have been matched
and the transform maps the corresponding points exactly onto each
other. The parameter α ∈ [0, 1] weighs the contradicting goals of a
large match (α small) versus small positional error (α large). In an
iterative algorithm, we maximize score alternatingly with respect to
M and to T , see Algorithm 1. M is optimized by a simple and fast
greedy approach [14], see Algorithm 2. The scoring function ensures
that no point pairs will be assigned to M that are too far apart. T is
optimized by computing the matching transform for a givenM . The
score-function is maximized once for each starting transform T initi ,
using the respective T initi as initialization. The final result of the
alignment algorithm is the matching and transform corresponding to
the highest score across all computed score maxima.

3.3. Uniform scaling for deformed data

For data that suffered from severe deformations, an additional uni-
form scaling can lead to a better alignment. The scaling factor s for
the matching transform is computed as follows:

s =

P|M∗|
i=1 p′i · q′iP|M∗|
i=1 q′i · q′i

, p′i = pi − cP ′ , q′i = R(qi − cQ′), (4)

where cP ′ and cQ′ are the average point positions of the matched
setsP ′ andQ′ respectively. R is the rotation computed as in the rigid
case. However, this approach only works if a suitable clique can be
found. The points in such a clique are usually spatially concentrated,
as the effect of the global scaling on their absolute mutual distances
is limited (see e.g. Fig. 2, middle).



Algorithm 1: Optimize matching and transform

Input: Point sets P and Q, set of starting transforms {T initi }
Output: Near-optimal matching Mopt, transform Topt
foreach T initi do1

snew ← 02

Ti ← T initi3
repeat4

si ← snew5
Mi ← greedyPointMatching(P,Q, Ti)6
Ti ← computeTransform(P,Q,Mi)7
snew ← score(P,Q,Mi, Ti)8

until snew ≤ si9

end10
(Mopt, Topt)← arg max

i
score(P,Q;Mi;Ti)11

Algorithm 2: Greedy Point Matching
Input: Finite point sets P and Q, transform T
Output: Near-optimal matching Mopt

M∗0 ← ∅1
P ′ ← P , Q′ ← Q2
k ← 03
while ∃p ∈ P ′, q ∈ Q′ do4

(p, q)← arg min
p∈P ′,q∈Q′

‖p− T (q)‖
5

M∗k+1 ←M∗k ∪ {(p, q)}6
P ′ ← P ′ \ {p}7
Q′ ← Q′ \ {q}8
k ← k + 19

end10
Mopt ← arg max

k
score(P,Q;M∗k ;T )11

3.4. Increasing performance

As the computation of the starting transforms is independent of the
point matching optimization, we can generate a set of starting trans-
forms using different point sets and use these for the optimization
step. When these point sets are smaller than the original, comput-
ing time for clique detection will be reduced. In the case of mi-
crotubuli, for example, one could select the endpoints of segments
which are close to parallel to the z-axis (and thus have a good chance
of having a matching counterpart) for the computation of the start-
ing transforms, resulting in much smaller point sets and a significant
speed-up. Of course one can also use the reduced point set for the
optimization step, as we do in section 4.2. As long as enough reliable
points remain, a correct alignment can be achieved much faster.

A second efficiency improvement is a reduction of the number of
starting transforms to compute the optimal matching for, by retain-
ing only transforms corresponding to cliques larger than a certain
minimal size c (we set c = max(2, 0.3 ·min(|P |, |Q|))).

4. RESULTS

4.1. Alignment of neuronal processes

The automatic alignment algorithm was applied to a stack of 30
slices containing segments of a neuron (axons) obtained from bright-
field microscopy (see Fig. 2, left). The number of endpoints to match
ranged from 3–101.
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Fig. 3. Left: Average distance between manually and automatically
aligned end points (∆27 = 25.2µm). Right: Average end point dis-
tance between the alignments of three subjects (1, 2, 3) and our au-
tomatic method (A). The average and maximum value of all subject-
subject combinations are indicated by a line in the left figure.

Almost all slices could be aligned, except two at the top and one
at the bottom, where there were too few points (3–6) to produce a
valid result. A good match, and thus a good alignment, is character-
ized by a matching fraction that is large enough to rule out random-
ness and by the absence of mismatches. The results obtained with
parameter values d = 10µm and α = 0.25 fulfilled these criteria,
as they resulted in a match size of 32–100% with a minimum of 5
points and no visually apparent mismatches. The computation time
ranges from 0.02–8.5s.

The successfully aligned sections (4–29) were compared to their
manually aligned counterpart. The manual transform TM and auto-
matic transform TA were computed for each slice with respect to
the untransformed predecessor section. Then the average distance ∆
between the segment end points qi that served as input for the align-
ment was computed: ∆ = 1

|Q|
P|Q|
i=1 ‖TM (qi) − TA(qi)‖. The

results are displayed in Fig. 3 (left).
For comparison we assessed the inter-subject differences in

manual alignment. A 6-slice data set was aligned automatically and
by three individuals. The average point distance ∆ was computed as
above for all combinations of manual and automatic alignments (see
Fig. 3, right). After visual comparison of the outlier sections 23 and
27, the expert who carried out the manual alignment, confirmed that
the automatic alignment was at least as good. From these results we
conclude that the automatic alignment results in similar quality as
the manual alignment.

4.2. Alignment of microtubuli

We also applied our algorithm to the alignment of a stack of 9 slices
containing microtubuli, obtained by manual tracing of electron to-
mography data using the IMOD [15] software. We failed to manu-
ally align the lines as there are many segments (∼700 per section)
but no prominent, clearly identifiable features.

For the automatic alignment the number of points was reduced
using the angle-based selection (see Sec. 3.4) to increase perfor-
mance. All lines having an angle smaller than 70 degrees with the
xy-plane were ignored, reducing the average point set size from 436
to 61. Besides, values d = 40nm and α = 0.1 were chosen.

Our method was able to align six out of eight slice pairs within a
few seconds (0.10–6.7s). Visual inspection showed that the match-
ings are generally correct and of sufficient size (18–66% of the
points, with a minimum of 10) to obtain a reliable transformation.

However, an additional number of matching point pairs that
were not reported by the automatic algorithm could usually be deter-



Fig. 2. Left: Aligned stack containing neuron fragments (segments colored by section). Middle: Rigidly aligned slice pair containing
microtubuli. The matched points are clustered in the center of the data set (colored point pairs). Further away from the center, there are many
unmatched points (black). Many of those could be matched when using an additional scaling (right).

mined by visual inspection (see Fig. 2, middle). Firstly, this can be
explained by the defensive choice for α resulting in almost no false
pairings, but also in a reduced number of total pairings. Secondly,
the results indicate a non-rigid deformation of the sections. To test
this, we added a uniform scaling s as an additional degree of free-
dom (see section 3.3). The resulting scaling factors ranged between
0.5–10%, and particularly for the more severely deformed sections
resulted in significantly better alignments (see Fig. 2, right).

Two slice pairs could not be aligned for reasons that are not yet
understood. Analysis is difficult as manual alignment is not feasible.

5. CONCLUSION

We presented an automatic method for the alignment of data stacks
containing filamentous structures. It uses a point-matching approach
to find the optimal rigid transform (with optional uniform scaling)
for each section. The application to neuron data showed that it is
fast and produces accurate results. Also microtubuli data could be
aligned, something that is infeasible to do manually.
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