
Eurographics/ IEEE-VGTC Symposium on Visualization 2010
G. Melançon, T. Munzner, and D. Weiskopf
(Guest Editors)

Volume 29 (2010), Number 3

Accelerated Visualization of Dynamic Molecular Surfaces

Norbert Lindow, Daniel Baum, Steffen Prohaska, and Hans-Christian Hege

Zuse Institute Berlin (ZIB), Germany

Abstract
Molecular surfaces play an important role in studying the interactions between molecules. Visualizing the dynamic
behavior of molecules is particularly interesting to gain insights into a molecular system. Only recently it has
become possible to interactively visualize dynamic molecular surfaces using ray casting techniques.
In this paper, we show how to further accelerate the construction and the rendering of the solvent excluded sur-
face (SES) and the molecular skin surface (MSS). We propose several improvements to reduce the update times
for displaying these molecular surfaces. First, we adopt a parallel approximate Voronoi diagram algorithm to
compute the MSS. This accelerates the MSS computation by more than one order of magnitude on a single core.
Second, we demonstrate that the contour-buildup algorithm is ideally suited for computing the SES due to its
inherently parallel structure. For both parallel algorithms, we observe good scalability up to 8 cores and, thus,
obtain interactive frame rates for molecular dynamics trajectories of up to twenty thousand atoms for the SES and
up to a few thousand atoms for the MSS. Third, we reduce the rendering time for the SES using tight-fitting bound-
ing quadrangles as rasterization primitives. These primitives also accelerate the rendering of the MSS. With these
improvements, the interactive visualization of the MSS of dynamic trajectories of a few thousand atoms becomes
for the first time possible. Nevertheless, the SES remains a few times faster than the MSS.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—ray tracing, visible line/surface algorithms, algebraic surfaces J.3 [Life and Medical Sci-
ences]: Biology and Genetics—molecular dynamics, molecular surfaces

1. Introduction

The function of a biomolecule is driven to a large extent
by its 3-dimensional structure. While the chemical struc-
ture formed by the covalent bonds between the atoms of
the molecule is relatively stable, the shape of a molecule
changes rapidly. For proteins these changes are mainly re-
stricted to the side chains of the amino acids, while the sec-
ondary structure formed by hydrogen bonds is preserved.
Most proteins act as enzymes, which are activated by smaller
molecules, called ligands. The ligands interact with the pro-
tein, thereby inducing changes in the geometry of the pro-
tein, which modify its function.

For more than two decades, several types of molecular
surfaces have been used to study interactions between pro-
teins and ligands. The most widely used type of molecular
surface is the solvent excluded surface (SES). The molec-
ular skin surface (MSS) is not yet used that often, but has
a lot of potential and might become more important in the

future. Until recently, surfaces of both types had to be tri-
angulated to visualize them. With modern GPUs, fast direct
visualization of these surfaces using ray casting has become
possible. Krone et al. [KBE09] report interactive SES visu-
alization of dynamics trajectories for a few thousand atoms.
Interactive MSS rendering for such molecules is also possi-
ble [CLM08]. But the time required to construct the MSS
prevented its use for dynamic trajectories of proteins and
other macromolecules.

The interactive visualization of dynamic molecular sur-
faces requires a balanced combination of an efficient compu-
tation of the surface description and its rendering. The data
transfer between CPU and GPU also needs to be considered
if the surface is computed on the CPU and rendered on the
GPU. In this paper, we propose several improvements that
speed up the interactive visualization of dynamic molecular
surfaces. We evaluate the suitability of the contour-buildup
algorithm (Sect. 4.1) and an approximate Voronoi diagram

© 2010 The Author(s)
Journal compilation © 2010 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.



N. Lindow, D. Baum, S. Prohaska, and H.-C. Hege / Visualization of Dynamic Molecular Surfaces

algorithm (Sect. 4.2) for the parallel computation of molec-
ular surfaces (Sect. 4.3). For the MSS, we define an atom
neighborhood that results in a speedup of the surface com-
putation by more than one order of magnitude. For render-
ing, we use tight-fitting bounding quadrangles to reduce the
number of fragments to be considered for ray intersection
(Sect. 5.2), and we employ geometry shaders to reduce the
amount of data being sent to the GPU (Sect. 5.3). Note that
we do not exploit coherency between subsequent frames, but
recompute the whole surface except for partial updates, if
these are possible.

The rest of the paper is structured as follows. We summa-
rize related work (Sect. 2) and the different molecular sur-
face types (Sect. 3), before we present our improvements to
surface construction (Sect. 4) and rendering (Sect. 5). We
report timings in Sect. 6 and discuss our findings in Sect. 7.

2. Related Work

2.1. Molecular Surfaces

In 1971, Lee and Richards [LR71] presented a program to
draw the van der Waals (vdW) surface of a molecule. In
the same article, they define the accessibility of atoms to
a solvent. This definition became later known as the sol-
vent accessible surface (SAS). In 1977, Richards [Ric77]
defined the solvent excluded surface (SES), whose name
was proposed by Greer and Bush [GB78] in 1978. In
1981, Connolly [Con83] presented the first algorithm for
the computation of an analytical description of the SES,
which was improved by Perrot et al. [PCG∗92]. Varsh-
ney et al. [VJWW94] proposed a parallelized version based
on the computation of an approximate Voronoi diagram.
The reduced surface algorithm was presented by Sanner et
al. [SOS96] and shortly after it was extended to partial up-
dates for dynamic data [SO97]. At the same time, Totrov and
Abagyan proposed the contour-buildup algorithm [TA96].
Besides articles describing the analytical surface computa-
tion of the SES, numerous publications deal with its triangu-
lation, for example [Con85,ZXB07,RCK09]. Only recently,
Krone et al. presented the first work to visualize the complete
SES using ray casting [KBE09].

In 1999, Edelsbrunner [Ede99] proposed the skin surface
for a set of weighted points. In the same paper, he describes
an application to molecular surfaces, the molecular skin sur-
face (MSS). Methods for triangulating the skin surface were,
for example, presented by Cheng and Shi [CS04, CS05] and
Kruithof and Vegter [KV07]. A recent paper by Chavent et
al. [CLM08] describes ray casting of the MSS.

2.2. Ray Casting of Algebraic Surfaces

The MSS and the SES can both be decomposed into piece-
wise algebraic surfaces. These algebraic surfaces can be
rendered using ray casting on the GPU using shader lan-
guages, such as GLSL. Ray casting of algebraic surfaces of

vdW

SES

SAS

MSS

Figure 1: Surface definitions in 2D. Left: The fine continu-
ous line is the vdW surface. The SAS is represented by the
thick dashed line and the SES by the thick continuous line.
Two positions of the probe (gray) are depicted. Right: MSS
with mixed complex.

degree two, called quadrics, has been shown to be very effi-
cient [Gum03,KE04,RE05,SWBG06,dTLP07]. Ray casting
algebraic surfaces of higher degree is more costly. Toledo
et al. [dTLP07] evaluated several iterative methods for ray-
intersection with cubics and quartics and compare their re-
sults to the analytical intersection computation used by Loop
and Blinn [LB06]. While Toledo and Lévy [dTL08] use
the iterative Newton-Raphson algorithm, which they found
to be superior to Hart’s sphere tracing [Har96], Singh and
Narayanan [SN10] and Krone et al. [KBE09] successfully
apply the analytic stabilized Ferrari-Lagrange method pre-
sented by Herbison-Evans [HE95].

3. Molecular Surface Definitions

In this section, we mathematically define all molecular sur-
faces referred to in this paper. As the solvent excluded sur-
face (SES) is closely related to the van der Waals (vdW) sur-
face and the solvent accessible surface (SAS), we will define
all three kinds of surfaces. A 2-dimensional sketch of these
three surfaces is depicted in Fig. 1. Besides, we also define
the molecular skin surface (MSS).

For all molecular surface definitions, we need the notion
of a molecule. For the purpose of this paper, a molecule sim-
ply consists of a set of n atoms. Each atom i, 1 ≤ i ≤ n, is
characterized by its position pi ∈ R3 and its van der Waals
(vdW) radius ri. We denote the respective vdW spheres by
σ(pi,ri), or simply σi, 1≤ i≤ n.

3.1. Van der Waals (vdW) Surface

As the name suggests, the vdW surface is the boundary of the
union of all vdW spheres σi, 1 ≤ i ≤ n. At the intersections
of the vdW spheres, the surface contains sharp edges and in

© 2010 The Author(s)
Journal compilation © 2010 The Eurographics Association and Blackwell Publishing Ltd.



N. Lindow, D. Baum, S. Prohaska, and H.-C. Hege / Visualization of Dynamic Molecular Surfaces

some places, deep crevices can be present (see Fig. 1, left).
The vdW surface consists solely of convex spherical patches
which are enclosed by contours consisting of circular arcs
and complete circles lying on the vdW spheres.

3.2. Solvent Accessible Surface (SAS)

The SAS can be defined as the boundary of the extended
vdW spheres σ(pi,ri + rp), 1 ≤ i ≤ n, denoted by σ̃i,
where rp is the radius of a sphere approximating a solvent
molecule, hence the name solvent accessible surface. We
will refer to this sphere as ‘probe sphere’ and denote it by
σp = σ(pp,rp). In general, the smallest possible solvent is
considered, which is water. The SAS can also be consid-
ered as the surface defined by all centers of the probe sphere
while it touches at least one vdW sphere without intersect-
ing any of them. Similarly to the vdW surface, the SAS con-
sists solely of convex spherical patches which are enclosed
by contours consisting of circular arcs and complete circles
lying on σ̃i.

3.3. Solvent Excluded Surface (SES)

We can describe the SES as the inward-facing surface of the
probe sphere while its center lies on the SAS (see Fig. 2).
We can properly define the SES as the boundary of the com-
plementary volume of the union of all probe spheres that do
not intersect any vdW sphere, that is, as the boundary ofR3\

[
pp∈R3

σp | σp∩σi = ∅, ∀1≤ i≤ n

 .

The SES decomposes into surface patches of three different
types: convex spherical, concave spherical, and toroidal (or
saddle) patches. The convex spherical patches are composed
of those points of the vdW surface that the probe sphere
can touch without intersecting any vdW sphere. The concave
spherical patches are formed when the probe simultaneously
touches three or more atoms. Finally, the toroidal patches are
formed when the probe sphere roles along two vdW spheres
without touching or penetrating any other vdW sphere.

3.4. Molecular Skin Surface (MSS)

The skin surface [Ede99] is a smooth surface defined for
a set of n weighted points, with positions qi and weights
wi, and a shrink factor s ∈ [0,1]. One nice property of
the skin surface is that it is tangent continuous at each
point on the surface for s ∈ (0,1). Furthermore, it is free
of self-intersections. The molecular skin surface (MSS)
is a skin surface where the vdW spheres σ(pi,ri) deter-
mine the weighted points with qi = pi and wi = ri

2/s, s ∈
(0,1] [Ede99, KV04].

The molecular skin surface is defined based on a Voronoi
diagram with distance functions di(x) = ||x− qi||2−wi for
the weighted points i. From the Voronoi diagram and its

corresponding Delaunay triangulation, a mixed complex is
computed, which depends on the shrink factor s. Let Vi be
the Voronoi region of the weighted point i defined as

Vi :=
{

x ∈ R3 | di(x)≤ d j(x) : ∀ j = 1, . . . ,n, j 6= i
}

.

Furthermore, let νI :=
T

i∈I Vi, with I ⊆ {1, . . . ,n}. Then νI
is either empty or a convex polyhedron. For a non-empty
polyhedron νI , its dimension is l = 4−|I| and we can define
its corresponding k-simplex, k = 3− l, as δI := conv({qi|i ∈
I}), where conv(X) is the convex hull of X . We can now
define a mixed cell µI(s) := s ·νI +(1− s) ·δI and the mixed
complex of the molecular skin surface as

Mix(s) :=
{

µI | I ⊆ {1, . . . ,n}
}

.

For s = 0, the mixed complex is equal to the Delaunay
triangulation, while for s = 1, it is the Voronoi diagram.
A 2-dimensional example of an MSS with its correspond-
ing mixed complex is depicted in Fig. 1, right. The mixed
complex Mix(s) forms the basis to compute the molecular
skin surface, which decomposes into piecewise quadratic
patches of four different types: convex spherical patches
contained in Voronoi regions, hyperbolic patches corre-
sponding to Voronoi faces, hyperbolic patches correspond-
ing to Voronoi edges, and concave spherical patches corre-
sponding to Voronoi vertices. All patches are defined as the
intersection of two scaled orthogonal affine hulls of spheres,
called flats [Ede99].

Note that the choice of the weights wi for the molecular
skin surface ensures that the radii of the convex spherical
patches are independent of s and equal to the vdW radii ri.

4. Molecular Surface Construction

In this section, we describe two algorithms for the compu-
tation of molecular surfaces. We begin with the contour-
buildup algorithm [TA96] for the SES. We then describe
an approximate Voronoi diagram algorithm for weighted
points. This algorithm was previously used for the compu-
tation of the SES [VJWW94]. We define an atom neighbor-
hood for the MSS that allows adopting this algorithm for the
computation of the MSS.

4.1. Contour-Buildup Algorithm for SES

For the computation of the SES, several algorithms have
been proposed, some of which are mentioned in Sect. 2.1.
We propose to use the contour-buildup algorithm [TA96]. It
is very efficient and easy to parallelize, because the contour
of each atom can be computed independently.

The contour-buildup algorithm computes the SES in three
steps. First, it computes the SAS. From the SAS, all patches
of the SES are computed (Fig. 2). These patches might still
contain self-intersections, which are removed in a third step.

© 2010 The Author(s)
Journal compilation © 2010 The Eurographics Association and Blackwell Publishing Ltd.



N. Lindow, D. Baum, S. Prohaska, and H.-C. Hege / Visualization of Dynamic Molecular Surfaces

Figure 2: SAS and SES. Left: The complete contours of the
SAS and the SES are depicted. Each contour arc represents
a saddle (or toroidal) patch (yellow), and each vertex, the
point where three arcs meet, creates a concave spherical
patch (red). Right: Detailed view of the contour. The gray
sphere shows a position of the sphere.

Computation of SAS. This part of the algorithm is the most
involved one. It is illustrated in Fig. 3. For each of the ex-
tended vdW spheres σ(pi,ri + rp), the contour describing
the part of the boundary of σ̃i contributing to the SAS has to
be computed. As already mentioned in Sect. 3.2, all contours
consist of circular arcs and full circles. The arcs and circles
describing the contour of σ̃i are created by intersecting all
neighboring spheres of σ̃i, where the neighborhood Nrp(i)
of σ̃i is defined as

Nrp(i) :=
{

j | ||p j− pi||< r j + ri +2rp,1≤ j ≤ n, j 6= i
}
.

To quickly determine Nrp(i), we use a flexible 3-dimensional
grid with at most M grid cells, where M is an integer num-
ber that should be chosen proportionally to the number of
atoms (see Sect. 4.3). In each cell, the references to all atoms
whose centers lie in the cell are stored. Since the atom den-
sity within a molecule is bound, the number of references
in each cell can also be fixed. The fixed grid size M and the
fixed number of references per cell allow us to quickly adjust
the grid to the changes of the molecule without re-allocating
memory. The dimension of the grid is such that it encloses
all positions pi. The grid is then filled with m equally sized
grid cells, with m≤M (see Fig. 4).

In the first step, we compute for each σ̃i all intersection
circles ci j with all σ̃ j, j ∈ Nrp(i). These circles are analyzed,
and circles that do not contribute to the final contour are re-
moved. In the second step, we iteratively compute for each
σ̃i the contours from all remaining circles ci j. For the details,
we refer the reader to [TA96].

Computation of SES. As mentioned in Sect. 3.3, the SAS
contains all information to compute the SES. The SAS con-
tours simply need to be projected onto the respective vdW
spheres. These projections will generate the SES contours
(see Fig. 2). From each convex spherical patch of the SAS,
a convex spherical patch of the SES is generated; from each
contour arc of the SAS, a toroidal patch of the SES is gen-

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3: Stepwise creation of the contour of the red atom.
(a) Start contour (circle) created by the first neighboring
atom. (b) The second circle splits the first circle, thereby cre-
ating two arcs. (c) Both arcs are cut by the third circle, one
at the end point and one at the starting point. (d) The fourth
circle deletes some arcs and cuts the starting and end points
of one arc. (e, f, g) Analogously to (c). (h) Complete contour
of the red atom.

Figure 4: Flexible 3-dimensional grid for neighborhood
search. Two examples are given for different atom positions
of the same molecule.

erated; and from each end point of a contour arc, a concave
spherical patch of the SES is generated.

The generated SES description might contain self-
intersections, which arise in two cases. First, if the small
circle of the torus is larger than its big circle, the torus in-
tersects itself. When this self-intersection is removed, two
cusps remain. This intersection can be easily identified. The
intersection of two concave spherical patches is more costly
to identify. Here, all concave spherical patches that are close
enough to each other need to be tested for intersections. Sim-
ilarly to the neighborhood search, these patches can be found
using a 3-dimensional grid. In the original contour-buildup
algorithm, these intersections were truly computed and the
contours of the concave spherical patches were updated ac-
cordingly. Since we do not triangulate the analytical surface,
for each concave spherical patch, we only store the clipping
planes describing these self-intersections.

Partial update of the SAS. In protein-ligand docking sim-
ulations [BW09], the number of flexible atoms is often re-
duced to the amino acids in the active site of the molecule to
reduce the computational cost. In this case, we only need to
re-compute the contours of the flexible atoms i together with
their neighborhoods Nrp(i).

© 2010 The Author(s)
Journal compilation © 2010 The Eurographics Association and Blackwell Publishing Ltd.



N. Lindow, D. Baum, S. Prohaska, and H.-C. Hege / Visualization of Dynamic Molecular Surfaces

4.2. Approximate Voronoi Diagram for MSS

In this section, we show how the idea to approximate the
Voronoi diagram to compute the SES [VJWW94] can be
transferred to the computation of the MSS.

To compute the MSS, we first need to compute the
Voronoi diagram for the weighted points (qi,wi) with dis-
tance function di(x) = ||x − qi||2 − wi, with wi = ri

2/s.
Instead of computing the whole Voronoi diagram, we
only compute feasible cells as suggested by Varshney et
al. [VJWW94]. To properly define the feasible cell for the
MSS, we first need to define the neighborhood Ns(i) of an
atom i for the skin surface with shrink factor s. Let νI 6= ∅,
|I| = 2, be a Voronoi face. Furthermore, let Hi, j be the half
plane between the weighted points i, j ∈ I defined by all
points x with ||x−qi||2−wi = ||x−q j||2−w j . The orthog-
onal distance di(Hi, j) from qi to Hi, j is given by

di(Hi, j) =

∣∣∣∣∣ (q j−qi)2 +wi−w j

2 ·
∥∥q j−qi

∥∥
∣∣∣∣∣ .

Now we can define the neighborhood Ns(i) as

Ns(i) :=
{

j | s ·di(Hi, j) < ri,1≤ j ≤ n, j 6= i
}

.

Then a feasible cell for weighted point i can be defined as

Fi :=
{

x ∈ R3 | di(x)≤ d j(x) : ∀ j ∈ N(i)
}

,

where N(i) = Ns(i). Fi is generally larger than Vi, because
we consider less neighbors for the computation of Fi, thus
less half planes restrict the cell. To correctly compute the
MSS, we need to consider a weighted point j for the compu-
tation of the feasible cell Fi only if the scaled Voronoi face
νI intersects the vdW sphere σi. This is true if the orthogonal
distance di(Hi, j) scaled by s is smaller than ri. All weighted
points j for which this holds belong to Ns(i) by definition.

Due to computing feasible cells instead of Voronoi cells,
the algorithm scales linearly with the number of weighted
points, because for physically correct molecules, the size
of the neighborhood of the weighted points is bound by a
constant. Each feasible cell can be computed independently.
Hence, the algorithm can get trivially parallelized as was de-
scribed by Varshney et al. [VJWW94].

To obtain the analytical description of the MSS, we need
to compute the mixed complex for a specific shrink factor s
from the approximate Voronoi diagram. For each of the 0- to
3-dimensional Voronoi facets, we then generate the implicit
function as described by Edelsbrunner [Ede99].

4.3. Implementation Details

We implemented parallelized versions of the contour-
buildup algorithm and the approximate Voronoi diagram al-
gorithm using OpenMP. To avoid memory allocation in the
parallelized part of the algorithm, we estimate the necessary

memory requirements and allocate the memory in advance.
For the flexible neighborhood grid, we use M = 2 ·n.

In contrast to [VJWW94], we initialize each feasible cell
with a tetrahedron large enough to enclose the molecule. We
then iteratively intersect the feasible cell with the half planes
Hi, j of all neighbored atoms. All elements that are part of the
initial tetrahedron are subsequently ignored.

5. Ray Casting of SES and MSS

We use ray casting for directly visualizing the molec-
ular surfaces, similarly to Chavent et al. [CLM08] and
Krone et al. [KBE09]. Since both MSS and SES are com-
posed of piecewise algebraic surfaces, they are ideally suited
for ray casting. Algebraic surfaces are defined by implicit
functions that can be described by polynomials. For the
MSS, the polynomials are of degree two, called quadrics.
For the SES, the algebraic surfaces are of degree two and
four. The latter are also known as quartics.

The ray casting performance of algebraic surfaces is
mainly determined by two operations. First, the intersection
of rays with the algebraic surface needs to be computed.
Thus, the faster the intersections can be computed, the faster
the surface can be rendered. Second, the number of rays
that need to be tested for intersections is determined by the
size of the rasterization primitives, because for each raster-
ized fragment, we need to test for intersection. The smaller
these primitives are, the less rays need to be tested. How-
ever, a small number of rays will only be worthwhile if not
too much time is spent for computing the primitives. In the
following, we describe our choice of parameters concerning
these two operations.

5.1. Ray Intersection

We compute the ray intersection for quadrics analytically.
Details can be found, for example, in [SWBG06]. All spher-
ical patches as well as the hyperbolic patches of the MSS
can thus be rendered.

For intersecting a ray with the toroidal patch, we use
sphere tracing [Har96]. We first compute the minimal
bounding conic object of the toroidal patch and start the
iterative search at the intersection of the ray with the
cone (see Fig. 5). If the ray does not intersect the cone or
if it intersects the conic object at the flat ends, the ray does
not intersect the toroidal patch. Otherwise, we use the inter-
section point x0 (see Fig. 5) with the conic object as starting
point for sphere tracing. In each iteration step i, we compute
the distance li to the algebraic surface from the current point
xi. We then move forward along the ray to point xi+1 by a
step length li and compute li+1. We terminate sphere trac-
ing after a fixed maximum number of steps. If we are too far
from the surface at this point, we ignore the ray. Otherwise,
we take the last point as intersection point.

© 2010 The Author(s)
Journal compilation © 2010 The Eurographics Association and Blackwell Publishing Ltd.



N. Lindow, D. Baum, S. Prohaska, and H.-C. Hege / Visualization of Dynamic Molecular Surfaces

Figure 5: Ray casting of saddle patches. First, we compute
the intersection point with the bounding cone. We use this
point as starting point for sphere tracing. The distance to
the surface determines the step size.

5.2. Rasterization Primitives

SES. Instead of rendering the convex spherical patches, we
always render the whole vdW spheres. This produces correct
results, because the part of the vdW sphere not contribut-
ing to the SES is completely enclosed by the surface. For
each sphere, we use a square as rasterization primitive. This
square is placed orthogonally to the line from the camera
to the sphere center. The size of the square depends on the
distance to the camera and the radius of the sphere.

For the other two kinds of SES patches, we also compute
tight-fitting quadrangles. To achieve this, we first compute a
bounding cylinder for each patch. This cylinder can be easily
constructed for both kinds of patches. We then compute a
tight-fitting quadrangle for each cylinder.

Ignoring the self-intersections, a concave spherical patch
is a spherical triangle with vertices v1, v2, and v3. We con-
struct the bounding cylinder such that the cylinder radius is
equal to the radius of the circumcircle c of v1, v2, and v3. The
cylinder axis starts in the midpoint of c and is orthogonal to
the plane Hsph spanned by v1, v2, and v3. The cylinder length
is equal to the probe radius rp (see Sect. 3.2) minus the or-
thogonal distance from the probe center pp to Hsph. For the
toroidal patch, we compute the bounding cylinder such that
its axis is parallel to the torus axis and the cylinder radius is
set to the radius of the circumcircle of the projection of the
toroidal patch onto the plane orthogonal to the torus axis.
This is the minimal radius that can be achieved.

For the bounding cylinder, we determine the bounding
quadrangle as follows (see Fig. 6). Let Hcyl be the plane
spanned by the cylinder axis and the vector from the cam-
era position to the cylinder center. Then, we determine the
four intersection points of Hcyl with the cylinder caps. We
need the right-most and left-most points, which are depicted
by the red points in Fig. 6 (a) and (b). Through these two
extremal points we span a trapezoid whose parallel sides are
orthogonal to Hcyl . The lengths of these sides need to be
chosen such that the trapezoid completely encloses the cylin-

(a) (b)

(c) (d)

Figure 6: Computation of a tight planar object that includes
a cylinder after rasterization (d). In (a) and (b), two pos-
sibilities for the outer points of the cylinder are depicted.
(c) displays how the outer points are used to span the object.

der (Fig. 6 (c)). Fig. 6 (d) depicts the projected image of the
cylinder and its projected quadrangle.

MSS. For the convex spherical patches, we use the same
bounding quadrangles as for the SES. For the hyperbolic
patches corresponding to Voronoi faces, we use truncated
pyramids. For the other two types of patches, we directly use
the mixed cells. These cells are prisms with triangular base
area and tetrahedra, respectively. Note that here is room for
further optimization, but optimizing the rasterization primi-
tives for the other three patch types is more complex.

5.3. Implementation Details

We store the information to be transferred to the GPU in
vertex attributes, which are 4-dimensional vectors, and in a
single texture.

SES. As mentioned before, we render a whole sphere for
each convex spherical patch, hence we only need to send
the sphere center and the radius, which together are stored
in one vector. For the toroidal patch, we use 4 vectors. We
store the start and end points of the toroidal axis together
with the distances to the torus axis midpoint in the first two
vectors. The third vector is used for the bounding cylinder.
Since the cylinder axis may be dislocated from the torus axis,
we store the translation of this axis and the cylinder radius.
Furthermore, we store the small and big radii of the torus
and two cone parameters, which are needed for the ray inter-
section. For the concave spherical patch, we need 4 vectors:
one for the sphere center and three for the vertices. To re-
move the self-intersections, we store the clipping planes de-
scribing the self-intersection in a texture as done by Krone
et al. [KBE09]. The shader program then tests each intersec-
tion point whether it is clipped by any clipping plane. To re-
duce the data transfer, we compute all bounding quadrangles

© 2010 The Author(s)
Journal compilation © 2010 The Eurographics Association and Blackwell Publishing Ltd.



N. Lindow, D. Baum, S. Prohaska, and H.-C. Hege / Visualization of Dynamic Molecular Surfaces

0.8 0.5

0.1 0.3SES

Figure 7: Ray casting molecular surfaces of Gramicidin A
(1GRM): SES with probe radius 1.4 (center) and MSS with
different shrink factors. The patch colors denote different
patch types. SES: green=convex spherical, red=concave
spherical, yellow=toroidal. MSS: green=convex spheri-
cal, red=hyperbolic (Voronoi edges), yellow=hyperbolic
(Voronoi faces), blue=concave spherical.

on the GPU using geometry shaders. For sphere tracing, we
use a maximum number of 30 iterations, whereby the actual
number of iterations depends on the distance of the patch to
the camera.

MSS. For each convex spherical patch, we render a whole
sphere. For each hyperbolic patch, we transfer the axis, the
hyperboloid’s midpoint, a parameter describing the hyper-
boloid’s shape, and the patch’s bounding object. For each
concave spherical patch, we transfer the sphere center, its
radius, and the bounding tetrahedron.

6. Results

We tested our implementations on several molecules of dif-
ferent size. We used static as well as dynamic molecular
data. The static molecules (see Tab.1, first row) were taken
from the PDB [PDB]. They allow us to compare the results
with previous publications. The dynamic data sets were pro-
vided by our collaborators and show the potential of our
methods in real applications.

6.1. Surface Computation

In this section, we present the results for the parallelized
versions of the contour-buildup algorithm (SES) and the
Voronoi-based MSS algorithm. All tests were performed on
an 8 core 2,53 GHz Intel system. Tab. 1 gives the timings
for the molecular surface computation performed on 1 and
8 cores. For our algorithms, these timings include the com-
putation of all patch information that was sent to the GPU.

PDB #Atoms CB1 AVD1 (MSS) RS2

ID 1 8 1 8 1

1VIS 2531 102 18 451 83 80
1AF6 10517 451 73 2113 369 360
1GKI 20150 880 145 4184 698 770

1AON 58870 2407 405 9924 1683 2680
3G71 99174 4488 759 18507 3353 −

1System: 2 Intel Xeon E5540 2.53 GHz. 2System: Intel Core 2 Duo 3 GHz.

Table 1: Update times in ms of the OpenMP versions with
1 and 8 cores. For the SES, we used the contour-buildup al-
gorithm (CB) and for the MSS, the approximate Voronoi di-
agram (AVD) algorithm. The last column shows the update
times for the reduced surface (RS) given in [KBE09].

Using 8 cores, we measured a speedup of approximately 6
for the SES and 5 to 6 for the MSS. The MSS was computed
for a shrink factor s = 0.3, because we found the MSS for
this value to be most similar to the SES with a probe radius
of 1.4 (see Fig. 7 and supplementary material).

The plots (a) and (c) in Fig. 8 show the speedup that
we measured for the computation of the SES and MSS for
molecule 1AON with ∼ 60k atoms. The plots contain the
speedup for the overall computation and for the individual
parts. Note that for the main part of the computation (the
blue parts), we measured a speedup of more than 7 on 8
cores. The plots (b) and (d) in Fig. 8 show the proportion-
ate time for each part of the algorithm.

Compared to the reduced surface (RS) algorithm [SOS96]
used by Krone et al. [KBE09], the contour-buildup (CB) al-
gorithm scales better with the number of atoms (see Tab. 1).
While for small molecules the computational time is slightly
higher for the CB algorithm, for the largest molecule, 1AON,
the CB algorithm is faster than the RS algorithm. Note that
the computational times for the CB algorithm include patch
generation and data transfer to the GPU. Compared to the
approximate Voronoi diagram (AVD) algorithm for SES, the
CB algorithm was almost 1.3 times faster.

Chavent et al. [CLM08] report a computation time of 15 s
for the MSS of the 1J4N [PDB] molecule. For our algorithm,
we measured a computational time of 320 ms for the same
molecule with s = 0.3 on a comparable single CPU core,
hence the speedup is approximately a factor of 40.

6.2. Rendering

We measured the frame rates for five molecules (see Tab. 2).
We used the same static molecules and the same GPU as
Krone et al. [KBE09] and measured a speedup factor of at
least 1.3 for the SES. Compared to our MSS rendering, the
frame rates for the SES were higher by a factor of 2 to 4
for s = 0.5 and even higher for s = 0.3. We also compared
our MSS rendering to MetaMol [CLM08]. On an NVIDIA
GeForce 8800 GTX, we measured 30 frames per second

© 2010 The Author(s)
Journal compilation © 2010 The Eurographics Association and Blackwell Publishing Ltd.



N. Lindow, D. Baum, S. Prohaska, and H.-C. Hege / Visualization of Dynamic Molecular Surfaces

(a) (b) (c) (d)

Figure 8: Timings for SES and MSS of molecule 1AON on an 8 core 2,53 GHz Intel system. Diagrams (a), for SES, and (c), for
MSS, show the speedup for a complete update of the surface depending on the number of threads. Diagrams (b) and (d) show
the timings for the individual parts.

PDB #Atoms FR rendering performance (in fps)

ID (%) SES SES
[KBE09]

MSS
0.5

MSS
0.3

1VIS 2,531 60 74 60 39 25
1AF6 10,517 70 46 27 14 10
1GKI 20,150 70 26 19 8 6
1AON 58,870 55 18 13 4 3
3G71 99,174 60 14 − − −

Graphics card: NVIDIA GeForce GTX280.

Table 2: Rendering performance of static molecular sur-
faces. The table shows our SES results compared to the SES
results of [KBE09] as well as our results for rendering of the
MSS with shrink factor 0.5 and 0.3. The fill rate (FR) and the
resolution (1024×1024) are the same as in [KBE09].

(fps) for the 1J4N molecule, compared to 7 fps in Meta-
Mol [CLM08] on the same GPU. Thus, our MSS rendering
is faster by a factor of approximately 4.

For both SES and MSS, we implemented typical coloriza-
tion and simple transparency using blending. Furthermore,
we implemented visualization techniques like depth darken-
ing [LCD06] and silhouettes, which were also implemented
by Krone et al. [KBE09]. The overhead introduced by these
techniques is constant, because they use simple image fil-
ters. For example, for the more expensive depth darkening
of 1AON, the performance dropped from 18 to 16 fps.

6.3. Dynamic Molecular Surfaces

We tested the system with real dynamic molecular data to
evaluate how the combination of multi-threaded surface con-
struction with rendering performs under load. To obtain the
maximal performance, we used all 8 cores. The overall up-
date rates are given in Tab. 3. Please also see the supplemen-
tary video.

In the simulation of DynMol-2, 500 of 4,500 atoms
were flexible [BW09]. Including the neighborhoods of
these atoms, we had to recompute the contours for 1,500
atoms (cf. Sect. 4.1). Using partial updates, we measured a
speedup of 2.5 compared to re-computing the whole SES.

Molecule #Atoms overall update rate (in fps)

SES MSS (0.5) MSS (0.3)

DynMol-1 1200 110 25 20
DynMol-2 4500 33 7−8 5
DynMol-3 6500 20 5−6 3−4

Table 3: Overall update rates for dynamic molecules using
OpenMP with 8 cores on a 2 Intel Xeon E5540 2.53 GHz
system and an NVIDIA GeForce GTX280 graphics card.

7. Discussion

We now discuss the performance improvements that we ob-
served (see Tab. 4 for a summary).

construction rendering

SES 1 core: 1x to [KBE09]
8 cores: 6x to 1 core

>1.3x to [KBE09]

MSS 1 core: 40x to [CLM08]
8 cores: 5x to 1 core
200x to [CLM08]

>3x to [CLM08]

SES to MSS SES 4x to MSS SES >3x to MSS

Table 4: Approximate speedups of SES and MSS compared
to previous approaches, and speedup of SES over MSS.

For the computation of the SES, the contour-buildup (CB)
algorithm seems to be the method of choice. While it is triv-
ial to parallelize, which is not obvious for the reduced sur-
face algorithm [SOS96], it performs better than the approx-
imate Voronoi diagram (AVD) algorithm [VJWW94]. Fur-
thermore, the AVD algorithm has the drawback that it needs
more memory, because it also stores additional data struc-
tures for the feasible cells. The computation of these addi-
tional data structures might also be the reason for its worse
running time. Nevertheless, the AVD algorithm has the nice
property that it can be used for the computation of both MSS
and SES. The plots in Fig. 8 show that the patch computa-
tion limits scalability, while the CB and the AVD algorithms
alone seem to scale well beyond 8 cores. The most likely rea-
son for the limited scalability is the concurrent memory ac-

© 2010 The Author(s)
Journal compilation © 2010 The Eurographics Association and Blackwell Publishing Ltd.



N. Lindow, D. Baum, S. Prohaska, and H.-C. Hege / Visualization of Dynamic Molecular Surfaces

Figure 9: Visualization techniques. In the left image, the SES of molecule 1AON is rendered with depth-dependent lighting.
The middle image shows the colored MSS (s = 0.3) of molecule 1X5V with surface silhouettes. In the right image, the SES of
molecule 2JQC is blended with its ball-and-stick representation.

cess from all threads during patch creation. Note also that the
patch creation for the MSS has not been fully parallelized.

We believe that using tight-fitting bounding quadrangles
as rasterization primitives is the main reason for our im-
proved SES rendering performance (1.3 times faster than
[KBE09]). To confirm this, we also tested the point-based
approach used by Krone et al. [KBE09] and measured frame
rates similar to theirs, which supports our explanation. Note
that we compute the bounding quadrangles in the geometry
shader, so the data transfer to the GPU is the same for our
bounding quadrangles and basic points. For the high com-
putational load caused by sphere tracing in the fragment
shader, tight-fitting bounding geometry seems to be supe-
rior to basic points, which confirms that “geometry shaders
[offer] a viable option for the construction of bounding ge-
ometry” [GRE09]. We also tried the Newton-Raphson al-
gorithm instead of sphere tracing and were able to further
improve the rendering times of the toroidal patches by 10-
20%. But we noticed a few pixel errors at the patch contours
due to starting points that are too far from the intersection
point. Hence, we recommend using sphere tracing [Har96]
or the stabilized Ferrari-Lagrange method [HE95, KBE09].
Furthermore, we tested if storing the clipping planes in ver-
tex attributes is more efficient than the texture-based ap-
proach [KBE09]. This is not the case. Moreover, using ver-
tex attributes has the disadvantage that the number of vertex
attributes is limited, so we recommend using a texture.

We see several reasons for the improvement in MSS ren-
dering speed (3 times faster than MetaMol [CLM08]). First,
we use tight-fitting bounding quadrangles for the convex
spherical patches. Second, for the hyperbolic patches corre-
sponding to the Voronoi faces, we use 3-dimensional polyhe-
dra, which are possibly smaller than the mixed cells used in
MetaMol [CLM08]. Furthermore, we remove empty mixed
cells already on the CPU. Hence, we do not need to perform
intersection tests for these cells.

Compared to the SES rendering, the MSS rendering is
clearly more costly. We believe that this is mainly due to the
larger number of patches of the MSS. For shrink factors of

s = 0.5 and s = 0.3, the number of patches is approximately
4 times as large for the MSS. Moreover, we did not fully op-
timize the rasterization primitives of the MSS. Hence, fur-
ther improvements in the rendering performance might be
possible.

The results for dynamic data sets show that the overall
update rates are limited by the surface construction. With
our optimizations, data transfer to the GPU and rendering
does not represent a bottleneck on an 8 core system.

8. Conclusion

We presented improvements for the computation and render-
ing of the solvent excluded surface (SES) and the molecular
skin surface (MSS). We accelerated the MSS construction by
two orders of magnitude. With these improvements, interac-
tively visualizing the MSS of a molecule with a few thousand
atoms has become possible for the first time. Nevertheless,
in terms of computational and rendering speed, the SES re-
mains superior to the MSS by a factor of approximately 4.
Hence, we suggest using the SES for larger molecules.

A potential area of future work is the clipping of patches.
Ignoring patches that lie completely inside the MSS could
reduce the rendering time. Furthermore, correctly display-
ing a transparent SES requires to clip the convex spherical
and the toroidal patches. In this case, preserving the render-
ing performance could be challenging, since the rendering
of correctly clipped patches is more complex.

Coarse grained simulations present a further application
area, where partial updates of the molecular surface compu-
tation might be rewarding. It would be interesting to investi-
gate whether any speedup can be gained by applying such a
strategy for this kind of data.

Acknowledgments

We thank Marcus Weber and Bernd Kallies from Zuse Insti-
tute Berlin (ZIB) for providing the dynamic molecular data
sets. Furthermore, we thank the anonymous reviewers for
their helpful comments.

© 2010 The Author(s)
Journal compilation © 2010 The Eurographics Association and Blackwell Publishing Ltd.



N. Lindow, D. Baum, S. Prohaska, and H.-C. Hege / Visualization of Dynamic Molecular Surfaces

References

[BW09] BUJOTZEK A., WEBER M.: Efficient simulation of
ligand-receptor binding processes using the conformation dy-
namics approach. Journal of Bioinformatics and Computational
Biology 7, 5 (2009), 811–831.

[CLM08] CHAVENT M., LÉVY B., MAIGRET B.: High quality
visualization of molecular skin surface. Journal of Molecular
Graphics and Modelling 27, 2 (2008), 1391–1398.

[Con83] CONNOLLY M. L.: Analytical molecular surface calcu-
lation. Journal of Applied Crystallography 16, 5 (1983), 548–
558.

[Con85] CONNOLLY M. L.: Molecular surface triangulation.
Journal of Applied Crystallography 18 (1985), 499–505.

[CS04] CHENG H.-L., SHI X.: Guaranteed quality triangulation
of molecular skin surfaces. In Proceedings of IEEE Visualization
(2004), pp. 481–488.

[CS05] CHENG H.-L., SHI X.: Quality mesh generation for
molecular skin surfaces using restricted union of balls. In Pro-
ceedings of IEEE Visualization (2005), pp. 399–405.

[dTL08] DE TOLEDO R., LÉVY B.: Visualization of industrial
structures with implicit GPU primitives. In Proceedings of the
International Symposium on Visual Computing (ISVC) ) - Lecture
Notes in Computer Science (Berlin, Heidelberg, 2008), Springer-
Verlag, pp. 139–150.

[dTLP07] DE TOLEDO R., LÉVY B., PAUL J.-C.: Iterative meth-
ods for visualization of implicit surfaces on GPU. In Proceedings
of the International Symposium on Visual Computing (ISVC) -
Lecture Notes in Computer Science (2007).

[Ede99] EDELSBRUNNER H.: Deformable smooth surface de-
sign. Discrete & Computational Geometry 21, 1 (1999), 87–115.

[GB78] GREER J., BUSH B.: Macromolecular shape and sur-
facemaps by solvent exclusion. Proceedings of the National
Academy of Sciences USA 75 (1978), 303–307.

[GRE09] GROTTEL S., REINA G., ERTL T.: Optimized data
transfer for time-dependent, GPU-based glyphs. In Proceedings
of IEEE Pacific Visualization Symposium (2009), pp. 65–72.

[Gum03] GUMHOLD S.: Splatting illuminated ellipsoids with
depth correction. In Proceedings of Vision, Modeling, and Vi-
sualization (VMV) (2003), pp. 245–252.

[Har96] HART J. C.: Sphere tracing: a geometric method for the
antialiased ray tracing of implicit surfaces. The Visual Computer
12, 10 (1996), 527–545.

[HE95] HERBISON-EVANS D.: Graphics Gems V. Academic
Press, 1995, ch. Solving Quartics and Cubics for Graphics, pp. 1–
15.

[KBE09] KRONE M., BIDMON K., ERTL T.: Interactive visu-
alization of molecular surface dynamics. IEEE Transactions on
Visualization and Computer Graphics 15, 6 (2009), 1391–1398.

[KE04] KLEIN T., ERTL T.: Illustrating magnetic field lines using
a discrete particle model. In Proceedings of Vision, Modeling,
and Visualization (VMV) (2004), pp. 387–394.

[KV04] KRUITHOF N., VEGTER G.: Approximation by skin sur-
faces. Computer-Aided Design 36, 11 (2004), 1075–1088.

[KV07] KRUITHOF N., VEGTER G.: Meshing skin surfaces with
certified topology. Computational Geometry 36, 3 (2007), 166–
182.

[LB06] LOOP C., BLINN J.: Real-time GPU rendering of piece-
wise algebraic surfaces. ACM Transactions on Graphics 25, 3
(2006), 664–670.

[LCD06] LUFT T., COLDITZ C., DEUSSEN O.: Image enhance-
ment by unsharp masking the depth buffer. ACM Transactions on
Graphics 25, 3 (2006), 1206–1213.

[LR71] LEE B., RICHARDS F. M.: The interpretation of protein
structures: Estimation of static accessibility. Journal of Molecu-
lar Biology 55, 3 (1971), 379–380.

[PCG∗92] PERROT G., CHENG B., GIBSON K. D., VILA J.,
PALMER K. A., NAYEEM A., MAIGRET B., SCHERAGA H. A.:
MSEED: a program for the rapid analytical determination of ac-
cessible surface areas and their derivatives. Journal of Computa-
tional Chemistry 13, 1 (1992), 1–11.

[PDB] Protein Data Bank. http://www.pdb.org.

[RCK09] RYU J., CHO Y., KIM D.-S.: Triangulation of molecu-
lar surfaces. Computer Aided Design 41, 6 (2009), 463–478.

[RE05] REINA G., ERTL T.: Hardware-accelerated glyphs for
mono- and dipoles in molecular dynamics visualization. In Pro-
ceedings of EuroVis (2005), pp. 177–182.

[Ric77] RICHARDS F. M.: Areas, volumes, packing, and protein
structure. Annual Review of Biophysics and Bioengineering 6, 1
(1977), 151–176.

[SN10] SINGH J. M., NARAYANAN P. J.: Real-time ray tracing
of implicit surfaces on the GPU. IEEE Transactions on Visual-
ization and Computer Graphics 16 (2010), 248–260.

[SO97] SANNER M. F., OLSON A. J.: Real time surface recon-
struction for moving molecular fragments. In Proceedings of the
Pacific Symposium on Biocomputing, Maui (1997), pp. 385–396.

[SOS96] SANNER M. F., OLSON A. J., SPEHNER J.-C.: Re-
duced surface: An efficient way to compute molecular surfaces.
Biopolymers 38, 3 (1996), 305–320.

[SWBG06] SIGG C., WEYRICH T., BOTSCH M., GROSS M.:
GPU-based ray-casting of quadratic surfaces. In Proceedings of
the Eurographics Symposium on Point-Based Graphics (2006),
pp. 59–65.

[TA96] TOTROV M., ABAGYAN R.: The contour-buildup algo-
rithm to calculate the analytical molecular surface. Journal of
Structural Biology 116, 1 (1996), 138–143.

[VJWW94] VARSHNEY A., JR. F. P. B., WILLIAM J., WRIGHT
W. V.: Linearly scalable computation of smooth molecular sur-
faces. In IEEE Computer Graphics and Applications (1994),
vol. 14, pp. 19–25.

[ZXB07] ZHAO W., XU G., BAJAJ C.: An algebraic spline model
of molecular surfaces. In Proceedings of the Symposium on Solid
and Physical Modeling (SPM) (New York, NY, USA, 2007),
ACM, pp. 297–302.

© 2010 The Author(s)
Journal compilation © 2010 The Eurographics Association and Blackwell Publishing Ltd.


