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Summary. This work presents a numerical model of an idealised grain structure consisting of
spheres and a method to derive the geometric characterization of the corresponding pore space. Two
different starting points exist for obtaining the pore structure. Real grain structures can be obtained
via computed tomography followed by image processing. Idealised grain structures, consisting of
spheres, can be numerically modelled. In this paper we first concentrate on modelling, then we
present a definition of pore space usable for idealised structures, but also extensible to real grain
structures.

Key words: pore, pore throat, modelling

1 Introduction

Suffosion is the transport of fine grain through the pore space of the coarse grain, caused
by water flow. Initially the matrix of the carrier structure stays immobile, while the mobile
grain is washed out of the soil. The density of the soil declines and, eventually, the stability
of the soil can suddenly decrease, causing, for example, failure of embankments.

The possibility of suffosion depends on the geometry of the grains and their pore structure.
The geometry must be such that mobile grains can move through the pore space. In partic-
ular, soils with a gap grading are at risk. The geometric possibility alone, however, does not
mean that suffosion necessarily occurs. Hydrodynamic criteria must be met too. But with-
out the geometric possibility suffosion is never possible. Thus, understanding the geometric
situation in soil is crucial for understanding suffosion.

The geometry of the real grain and pore structure in soils is not easily accessible. While
it is relatively easy to measure the distribution of particle sizes by sieving, the geometric
organization of the particles cannot be revealed in this way.

Computed tomography (CT) can provide three-dimensional images of the soil structure.
CT, however, is quite expensive and thus the number of specimens that can be analysed
is limited; and CT is only the first step towards determining the geometric situation. In



54 Tobias Mehlhorn, Steffen Prohaska, Ulrike Homberg and Volker Slowik

addition, image processing is required, which typically requires further work, like adjusting
processing parameters to the particular specimen.

Modelling the grain and pore structure can be an alternative to examining real soils and
modelling can provide geometric parameters available for an idealised situation that are
hard to derive in real soils. Given the distribution of particle sizes, a model can provide, for
example, a geometric description of the pore space suitable for analysing the possibility of
particle transport by percolation theory. Further parameters can also be derived. Enzmann
[3], for example, describes “the computermodell PoreFlow |...] that computes the effective
hydraulic properties from the microscopic flow and transport through pore space”.

We present a model of an idealised grain structure consisting of spheres and a method to
derive the geometric characterization of the corresponding pore space. The model of grain
structure is created by means of an algorithm using a combined formulation of geometric
gravity based criteria and a stochastic-heuristic approach. The pore space is described as a
graph whose edges connect the pores and store the diameter of the largest particle that can
move along this edge. We further describe how the pore graph can be computed analytically
and how it can be approximated by discrete geometry. This work is part of an approach to
derive a new geometric suffosion criteria. This is described in [11].

2 Modelling of the Grain Structure

The algorithm for generating the model allows a systematic variation of particle size dis-
tribution as well as of particle content. Models created in this way are analysed regarding
to the pore structure. Certain criteria the model needs to satisfy are essential. Those are
defined as follows: All particles have to be stable. That means there are at least three points
the particle lies on and the projection of its centers of gravity has to be inside the polygon
whose vertices are the contact points. The particles must not overlap each other and the
bounding box of the modelled volume. Furthermore, the predefined particle size distribution
and packing density C has to be achieved

> particle volumes

C= (1)

specimen volume

2.1 Particle Structure

Particles are created in fractions of a grading curve and every particle’s radius is defined at
random within the limits of that fraction. Our approach allows an accurate reproduction of
grading curves in comparatively short calculating time.

Our algorithm works as follows: After creating the particles complying with given parameters,
the largest fraction is allocated first. Here, according to the stochastic-heuristic approach,
a position within the specimen body is randomly selected. Subsequently, starting from that
position a search for possible “neighbours” is performed. This search is restricted to an area
under the starting position with twice the radius of the largest particle in the grain-size
distribution. Within that area, all possible stable positions for that particle are located and
afterwards one from those positions is selected by chance. In case there is no position found
meeting these criteria of location, a new starting position as well as a new searchable area
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will be defined and tested. This process is repeated until the particle can be allocated or a
maximum number of trials is reached. Criteria applying to this are a stable location as well
as no overlapping with other particles or the specimen boundaries. To latter, however, the
particles can have contact with. Spheres which can not be allocated are deleted from the
grain-size distribution. Figure 1 shows a grain structure created using this algorithm.

2.2 Carrier Structure

The carrier structure consists only of immobile particles. Immobile particles are the ones
having four contact points minimum. At least one of these points has to be on the opposite
side of the plane formed by the other contact points and shifted to the particle center. Then,
kinematic constraint is ensured. Detaching the carrier structure from the particle structure
is necessary when using parts of realistic grain-size distributions having a ratio of

k= Bmas > 4,449 (2)

min

according to which, following Ben Aim and Le Goff [6], small spheres might be locked into
pores. However, as these are not required for the stability of the structure, they have to be
erased before further considerations.

For identifying the carrier structure, all particles are analysed concerning their position.
The particles having a stable position only, but are not immobile, are deleted as these are
potentially mobile, i.e. they might be able to move inside the structure or at least inside a
pore space. Since the carrier structure is decisive for further examinations, especially for the
assessment of the suffosion risk, these particles have to be removed. The carrier structure
created in this way may now be used to characterize the pore structure as described in the
following.

Figure 2 shows the carrier structure created out of the grain structure from Figure 1.

Fig. 1. Grain Structure Fig. 2. Carrier Structure
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3 Analysing Pore Space

The objective is to determine which particles can move within the pore space inside the carrier
structure consisting of spheres. Small particles might freely move through the structure, while
larger particles might be blocked at pore throats. Knowing the size of the largest particle that
can move through a pore throat is crucial for analysing the possibility of particle transport.

Analysing the distance to the surface of the grain is our basis for understanding possible
particle transport. Particles must fit in the pore space. Thus, assuming spherical particles,
their radii must be smaller than the distance to the nearest surface of all grains. At pore
throats, we want to find the largest sphere that can pass through the throat. Such a sphere
can touch several grains but must not intersect with any of them.

Bisectors and the medial axis provide a mathematical framework for analysing the distance
to the grain structure. The bisector of two objects O1 and O, in R3 is defined as the set of all
points that have equal distance to both objects [7]. A bisector in three-dimensional space is a
surface that lies centrally between the two objects. If the objects cannot be distinguished, the
symmetry set replaces the bisector: The symmetry set of a single solid object O is defined as
the centers of spheres that touch O in two or more points. By restricting the eligible spheres,
the medial axis can be defined: The medial axis is defined as the centers of spheres that
touch O in two or more closest points, that is there is no point of O closer to the center of
the sphere than the touching points. From the large amount of publications that discuss the
medial axis, we only mention a few of them here. Originally, the medial axis was introduced
by Blum [2]. A recent review of the state of the art of computing the medial axis is given by
Attali et al. [1]. Giblin et al. [4] classify the medial axis into five types of points, which are
organized into sheets, curves, and points.

We capture the essential information about the pore space in the pore graph. The vertices of
the pore graph describe the pore centers and its edges describe possible paths to neighboring
pores. The size of the largest particle that can freely move between two pores is associated
with the edge connecting the two pores. As Giblin et al. [4] discuss, the centers of spheres
that touch O in three or more closest points form a one-dimensional subset of the medial
axis, which can be interpreted as a graph. This is nearly what we are looking for. In contrast,
however, to a single object that is the basis for the definition of the medial axis, our grain
structure is given as distinct objects, so we can incorporate this knowledge in the description
of the pore graph. Assuming a collection of n grains Oy, ..., O,, the pore graph is defined
as the set of points that have equal smallest distance to three or more grains O;. Points that
have equal smallest distance to four grains are the vertices of the graph. They are connected
by edges consisting of points that have equal smallest distance to three grains.

3.1 Computing the Pore Graph Analytically

The pore graph contains the smallest diameter along the edges connecting two pores which
is the pore throat. These pore throats are described by their location and radius. To define
the pore graph points, graph intersections as well as their length is given. Here, graph points
are those points lying on the graph and in equal distance from three or more spheres being
assinged to the graph. The pore itself is described by its volume, the diameter of the largest
sphere fitting in the pore space and the number of pore throats.
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Fig. 3. A pore graph obtained analytically. The circles are the pore throat. The spheres are scaled to
75% and the circels to 40% of their original size in order to open the view to the otherwise occluded
inner pores.

A throat in general can also be described as the utmost circle contacting three starting
spheres, and lying in the plane through these three starting sphere’s centers if no other
sphere is intersected. These throats are the starting point to a description of pore space.
Graph points are calculated by expanding the starting spheres stepwise by throat radius
and AR as intersections of the so enlarged starting spheres. To create the pore graph plane
two graph points and the throat center are cited, since all graph points lie inside a plane
perpendicular to the starting points centers’ plane. That graph plane is now intersected with
the dilated starting points of the neighbour throat, from which a possible graph intersection
as well as the appropriate distance to the starting spheres may result. Both, intersections
and distance are assigned to every particular pore graph and form the boundary in creating
graph points. Figure 3 depicts the pore graph computed analytically.

That way of approaching determining pore graphs has the advantage to be able to create
curved graphs and so make a description of the pore space for a larger k-ratio possible as
well.

3.2 Computing the Pore Graph using Discrete Geometry

Discrete geometry provides an alternative way of computing the pore graph. We directly
mimic the definition of the pore graph, as the set of points that have equal smallest distance
to three or more grains O;, by well-known image processing algorithms: 1) The grains are
scan-converted, that is they are sampled onto a regular grid of voxels. Each voxel is assigned
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the identifier 7 of the grain O; that covers this voxel. Background voxels, not covered by
any grain, are assigned zero. 2) Next, the distance transformation of the grain structure is
computed [5]. The result contains the distance to the nearest grain at each voxel. 3) The
watershed transform [10] of the distance transform is now computed, using the scan-converted
spheres as seeds. This results in a volume that is completely labeled with the grain identifiers.
The label at each voxel identifies the nearest grain. 4) We identify voxel neighborhoods of
size 2 X 2 x 2 that contain three or more labels, because these are the neighborhoods that
contain points that have equal distance to at least three grains. For each such neighborhood
we mark a representative voxel (the bottom, left, front voxel) in the resulting volume. All
other voxels of the result are marked as background. 5) The resulting (thick) voxel skeleton
is post-processed by thinning [9] to remove thick parts. 6) The thin skeleton is converted to
a graph, as described in [8]. In addition, the distance map is evaluated along the pore graph
edges. Figure 4 depicts a visualisation of a pore graph computed in the described way.

Fig. 4. A pore graph computed using discrete geometry. The pore graph is depicted in red. A high
saturation emphasizes thicker parts. The spheres are scaled to 75% and the edges to 40% of their
original radius in order to open the view to the otherwise occluded inner pores.

4 Results and Discussion

Modelling of suffosive soil is made possible by the here presented algorithm for creating grain
structures consisting of spherical particles. All models were scrutinized concerning overlap-
ping of spheres with each other or the specimen body. The localisations of all spheres were
checked, thus all spheres lie stable at least. These tests were realized in cubic specimen bodies
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having a size ratio of 2.5d,qz t0 5dmas and containing a maximum of 10 spheres which have
diameters between d,,;, = 0.00063m and d,,q: = 0.02m. We observed a dependence between
specimen body size and the maximum grain, which, as expected, leads to an approach of the
really arranged particle size distribution with the one determined before while undergoing a
sinking ratio. It is to assume that at a specimen body size of about 10d;,qz, & size commonly
found in literature, the particle size distribution is reproduced exactly. The evidence of that
is still to be provided as at the moment the computing time to create a system consisting of
approximately 10° spheres and with a specimen body size of 5 d,,4. takes approximately one
day on a current desktop PC (single core, 3.0 MHz). Assuming that the algorithm shows an
almost proportional dependence between number of spheres and computing time, a parallel
implementation running on multi core processors could achieve the speed-up that make com-
puting larger models feasible. Then it would be possible to scrutinize and evaluate systems
having a size of 10 d,,q, and consisting of about 4 - 10° spheres.

The algorithm deriving the carrier structure deletes all potentially mobile particles not being
involved in building such a structure. If this algorithm is applied infinitely often to the
system with a widely staged grain size distribution of a soil threatened by suffosion there is
no convergence and all grains are deleted one by one. This might be caused by the algorithm
itself or could be a first sign for a suffosion risk. This validation is subject of further work.
Among other things, an application to a structure created following a grain size distribution
of a soil not being at suffosion risk is desirable as well as a validation based upon the pore
graph by putting the particular pore graphs of the single intermediate steps opposite each
other. This validation is an important step on the way to a suffosion criterion.

As the carrier structure is used as base the deduction of the pore graph is possible. This
provides the input parameters for the percolation theory. An extension of the presented
algorithms for using ellipsoid particles and scaling to larger data sets are planned.

For synthetic grain structures consisting of spheres, analytic computations and discrete ge-
ometry yield comparable pore graphs. Both methods compute approximately the same pore
graph and both methods compute an approximate distance along the edges, which can be
used to derive the pore throat diameter.

For spherical grains, the analytic solution, however, yields better results than discrete geome-
try. The analytic solution is only limited by floating point precision, while discrete geometry,
on the other hand, is limited by its discrete nature. The chosen voxel resolution limits ap-
proximation quality of the location and the distance to the grains. Although discretisation
artifacts can somehow be removed by post-processing, for example smoothing the resulting
skeleton, we cannot completely avoid them.

An advantage of discrete geometry is, though, that it naturally extends to objects of arbitrary
shape. Arbitrary objects can be provided as labels in a voxel volume and the discrete method
described can compute a pore graph. This will allow us to apply the method to grain structure
segmented in image data of real soil specimens acquired by computed tomography.

We explicitly refer to individual grains in the definition of the pore graph and exploit this
when computing the pore graph. Thus, individual grains must be provided as input to our
algorithm. We could loosen this input requirement by referring to the medial axis, instead of
bisectors. Individual grains would no longer be needed, avoiding the need for segmenting the
grain structure into individual grains. A single large grain structure O would be sufficient
input. But the watershed algorithm, which is part of our discrete method, could no longer
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be used as is, because of lacking seeds. It is future work to investigate how our method could
be modified to support a single large grain structure.

5 Conclusions

The creation of 3D particle packings is possible. The reduction of the packing to a carrier
structure is a very promising approach and is base for analysing the pore space. The analyses
using the presented techniques show good chances of success for idealised as well as for
real structures. A further validation of the pore graphs in large systems is planned. As the
knowledge about the pore graph is crucial for understanding suffosion, we expect that the
work presented will contribute significantly to defining a suffosion criteria as outlined in [11].
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