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Abstract

We propose a new criterion to characterize hierarchical two-dimensional vortex regions induced by swirling mo-
tion. Central to the definition are closed loops that intersect the flow field at a constant angle. The union of loops
belonging to the same area of swirling motion defines a vortex region. These regions are disjunct but may be nested,
thus introducing a spatial hierarchy of vortex regions. We present a parameter free algorithm for the identification
of these regions. Since they are not restricted to star- or convex-shaped geometries, we are able to identify also in-
tricate regions, e.g., of elongated vortices. Computing an integrated value for each loop and mapping these values
to a vortex region, introduces new ways for visualizing or filtering the vortex regions. Exemplary, an application
based on the Rankine vortex model is presented. We apply our method to several CFD datasets and compare our
results to existing approaches.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.8]: Applications—Physical
Sciences and Engineering [J.2]: Physics—

1. Introduction

Understanding the structure of vortex systems is an impor-
tant task in flow analysis. Flow analysis with CFD or experi-
mental methods has become routine in many technical engi-
neering fields. Vortices belong to the most important struc-
tures in flow fields. They are often directly connected to the
objective of optimization in engineering problems. For in-
stance, vortical structures directly impact the lift of airfoils
and they are tightly connected to cavitation effects on ma-
rine propulsors. Besides the pure existence and location of
vortices, also their areas of influence are of interest for a de-
tailed comprehension of the flow structure. Vortices interact
with each other and evolve over time. Formation and collaps-
ing of vortices, growing and shrinking, as well as merging
and pairing are important events that characterize the flow. In
summary, the whole system consisting of vortices and their
interconnections, as well as vortex strengths, sizes, and ex-
tents are important for understanding flow situations.

Despite the importance of vortices, a commonly accepted
definition of a vortex including its spatial extent and a unique
characterization of vortex hierarchies does not exist. Various
criteria are used in practice to find and visualize systems of
vortices. Among them, vortex definitions based on swirling
motion of the velocity field of a flow solution are widely

Figure 1: Hierarchical vortex regions resulting from a su-
perposition of Oseen vortices. Distinct vortex regions are
colored differently.

used. Although the velocity field is not Galilean invariant
and thus dependent on the frame of reference, swirling mo-
tion is illustrative and complies well with an intuitive no-
tion of vortices. The shape of a vortex region depends on the
chosen vortex criterion. For the analysis of swirling motion
vortices, a criterion that is able to identify complex regions
of weak and elongated vortices reliably is desirable. Vortex
merging and splitting can create complex systems of vortices
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that are best described hierarchically. An automatic extrac-
tion of vortex hierarchies therefore can give valuable insight
to vortex evolution.

In this paper we present a novel definition of 2D vortex
regions of swirling motion type, based on the angle between
the local flow direction and the region’s boundary. We fur-
ther describe an algorithm to identify such regions and to
extract them in a hierarchical fashion. The extracted regions
comply well with an intuitive understanding of swirling mo-
tion. The key advantages of this method are:

• the extraction algorithm is parameter-free,
• arbitrarily shaped, smooth vortex regions are found (not

just star-shaped regions),
• hierarchical vortex structures are detected,
• vector fields with and without divergence are handled

alike, and
• the method is grid-independent: only streamline tracing

and critical point detection are needed.

2. Related Work

Vortex visualization and extraction has been broadly dis-
cussed; a good overview has been presented by Post et
al. [PVH∗03]. Three main approaches for the extraction of
vortex geometries exist: methods that are based purely on
properties of a physical indicator function, methods that re-
quire also a geometrical construction, and purely geometri-
cal methods.

Indicator based extraction methods first compute a scalar
valued indicator function, whose magnitude relates to the
strength of vortex activity. Commonly used indicator quanti-
ties are vorticity magnitude, pressure, helicity, normalized
helicity, λ2 by Jeong et al. [JH95] or the quantity Q by
Hunt [Hun87]. In order to obtain geometrical representa-
tions of vortex regions, iso-surfaces of these indicator func-
tions are computed. Methods using this approach often do
not identify individual vortices and are usually not able to
separate adjacent vortices. Furthermore, the extracted re-
gions depend on a parameter that is often chosen arbitrar-
ily, the threshold value of the iso-surfaces. Schneider et
al. [SWC∗08] extracted vortex regions based on λ2; they
used a contour tree for the selection of the geometry.

Another approach for determining the shape of a vortex is
to explicitly extract the vortex hull geometry for each given
or previously extracted vortex coreline by sending out a fan
of rays. All these methods, made for star-shaped regions,
have been defined on 2D slices of a given vector field. Banks
and Singer [BS95] introduced this method to construct a vor-
tex hull as a series of connected contour lines. A fan of
rays emanating from the core is sent out, until a threshold
of a vortex region criterion is exceeded. The contour line
that connects the endpoints of the rays is the outer bound-
ary of the vortex in that plane. As vortex criterion they used
a pressure threshold. Bauer et al. [BPSS02] used the same

method and a threshold of the absolute value of the imagi-
nary part of the complex eigenvalues of the velocity gradient
tensor as vortex region criterion. Stegmaier et al. [SRE05]
used a λ2 threshold for the termination of the sampling rays.
Sharing the same basic idea, Garth et al. [GTS∗04] extended
that approach. Motivated by the Rankine vortex model, they
searched for local maxima of the tangential velocity compo-
nent. Jankun-Kelly et al. [JKJTM06] used the same method
for the vortex hull extraction and Tricoche et al. [TGK∗04]
for analyzing complex datasets.

A purely geometric approach was chosen by Sadarjoen
and Post [SP99]. In 2D steady flow fields a search for stream-
lines with a winding angle of 2π was performed with the
additional requirement that the distance between start and
endpoint of a streamline is relatively close. Streamlines that
belong to the same vortex were clustered and an elliptic
representation was computed from all sample points of the
streamlines. This approach was extended by Reinders et
al. [RSVP02] for 3D vortices with known vortex core axis
direction.

Bauer and Peikert [BP02] presented a method for vortex
coreline extraction and tracking in scale-space. Feature lines
break at smaller scales and thus introduce a hierarchy of vor-
tices.

Wischgoll et al. [WS01] first introduced an extraction al-
gorithm for closed streamlines, further improvements were
made for example by Theisel et al. [TWHS04] by introduc-
ing a grid-independent algorithm. Vector field topology, in-
troduced by Helman and Hesselink [HH89, HH91] and Asi-
mov [Asi93] is the basis of most work for structural analysis
of vector fields. We generalize the concept of closed stream-
line loops and present an algorithm for vortex region extrac-
tion that makes use of vector field topology.

3. Vortex Regions

We propose a definition for the shape of a vortex region
that is motivated by closed streamlines of divergence-free
vector fields. In the intuitive understanding of a vortex of a
divergence-free steady flow field, particles move around a
center, e.g. a vortex consists of the union of all closed orbits
winding around a common center.

In vector fields with divergence, streamlines are not
closed. As a generalization of the streamline criterion, we
introduce lines whose tangents have a constant incident an-
gle to the vector field. Such lines are illustrated in Fig. 2.
From top left to bottom right the four images show linear
vector fields with increasing divergence and decreasing curl.

This angle criterion removes the divergence in a vortex
region by decomposing the vector field in components tan-
gential and perpendicular to a line of constant incident angle.
The former is divergence-free, the latter is curl-free. This is
similar to a Helmholtz-Hodge decomposition [Hel58] of the
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Figure 2: Linear vector fields from divergence-free (top-
left) to curl-free (bottom-right), created by rotating vectors
of a divergence-free field up to π/2. The yellow ellipses in-
tersect the vector fields in a constant angle.

(a) Vortex Region

(b) Divergence-free

(c) Curl-free

Figure 3: Complex-shaped vortex region with divergence
(a), streamlines converge towards the critical point. Vector
field decomposition induced by the lines of constant incident
angle in a divergence-free (b) and curl-free part (c).

vector field, but for each vortex region separately, instead of
the entire field. Such a decomposition is depicted in Fig. 3
for a non-trivial vortex. The lines with constant incident an-
gle are streamlines in the divergence-free vector field.

3.1. Definition

We now formalize our motivation. We start from a given con-
tinuous 2D vector field

V : R2→ R2, (1)

and apply the rotation operator Rφ, which rotates the field by
an angle of φ in counter-clockwise direction, i.e.

Rφ =
(

cosφ −sinφ

sinφ cosφ

)
. (2)

Vector fields rotated by φ are denoted as

Vφ = RφV. (3)

A positively oriented closed streamline in the vector field Vφ

is called loop γφ of V . We explicitly exclude (limiting) loops
passing through critical points. Such a loop γφ intersects the
original vector field at a constant angle, i.e.

�(V (γφ(t)), γ̇φ(t)) = φ, (4)

since rotating the vectors around that angle yields a vector
field tangential to the loop. For a vector field V , the set M(V )
of all loops is defined as

M(V ) = {γφ| φ ∈ [0,2π],γφ loop in V}. (5)

This set M(V ) can be split into equivalence classes r1, ..rN
of loops that are homotopic with respect to R2 \ {x ∈
R2|V (x) = 0}. We define a vortex region candidate Ri as
the area that is covered by the lines of the equivalence class
ri.

The union of lines that wind around a common center de-
fine a vortex region candidate. A vortical behavior of the
flow in such a region is not enforced by the definition. For a
restriction to vortex regions, an additional filtering step must
be applied. Filter criteria can be based, e.g., on the presence
of complex eigenvalues of the enclosed critical points, vor-
ticity or a predominance of curl within a region.

We extract vortex region candidates bounded by loops that
start and end at saddle points. Due to continuity, at least one
saddle is included in the closure of a bounded region Ri. The
vortex region candidates Ri are disjunct but may be nested,
thus introducing a spatial hierarchy.

3.2. Extraction Algorithm

We present an algorithm that extracts all bounded vortex re-
gion candidates of a 2D vector field by detecting the bound-
ary loops of these regions, i.e. loops that start and end at the
saddle points of the vector field.

The extraction algorithm is based on intersection testing:
Given a positively oriented boundary loop γφ with a single
critical point inside, as illustrated in Fig. 4. In Vφ, γφ is a
streamline. While further rotating the vector field up to π,
the vectors of Vψ with ψ ∈ (φ,φ+π) on γφ point inside, i.e.,
streamlines of Vψ can enter γφ, but not leave it. Thus, two
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Figure 4: The LIC visualization in the background depicts
the streamlines of some vector field V . The white line γφ

is a closed streamline in the rotated vector field Vφ. Eight
streamlines Γ kπ

2
and Γ

′
kπ

2
are simultaneously tracked in V kπ

2
,

(k = 0, ...,3). In this example the streamlines Γ π

2
and Γπ can-

not cross the white line, so they necessarily intersect, or both
end at the same critical point in the center of the region.

streamlines started from the saddle of two differently rotated
vector fields in (φ,φ + π) must intersect inside. Sampling
vector field rotations in steps of π

2 and tracing streamlines
from the saddle as depicted, the streamlines Γ π

2
,Γπ traced in

Vπ

2
,Vπ intersect. The angle difference can be extended up to

π, while the streamlines still intersect. This way, the loop γφ

is detected.

The extraction algorithm is outlined in Alg. 1. The search
for boundary loops is performed from all saddle points of the
vector field repeatedly. During the search, boundary loops
are detected and previously detected boundary loops are
clustered. The clustering is necessary for the detection of
loops that encompass other vortex region candidates. The
algorithm terminates when no additional boundary loops are
found and the clustering did not change in a full pass over
all saddles.

Initially, the set directions is filled with all search di-
rections from all the saddle points of the vector field as il-
lustrated in Fig. 4. Clustering is maintained by the id data
structure. Initially, each saddle belongs to a different cluster.
Later on, the merging of clusters is done (line 17) by declar-
ing two clusters as equivalent.

For an element of directions, a search is performed in
searchLoop. This method either detects a new boundary
loop Γ (line 12), the need for an update of the clustering

Algorithm 1 Outline of the vortex region extraction
1: // Initialization
2: for all saddle s do
3: id(s) = unique_id
4: for φ ∈ {0,π/2,π,3π/2} do
5: d← eigenvector to positive eigenvalue ofs inVφ

6: directions.push_back(s,d,φ);
7: directions.push_back(s,−d,φ);
8: // Boundary loop detection
9: repeat

10: for all {s,d,φ} ∈ directions do
11: {Γ,clusterId}← searchLoop(s,d,φ)
12: if Γ 6= null then
13: loopBounds.push_back(Γ)
14: id(Γ) = id(s)
15: directions.remove({s,d,φ})
16: else if clusterId 6= null then
17: declare clusterId == id(s)
18: directions.remove({s,d,φ})
19: until loopBounds and id did not change

(line 16), or none of them. If a loop is found, it is added to
the result set loopBounds and assigned to the same cluster
as the saddle it starts from. If the clustering needs an update,
the cluster of the saddle is merged with the other cluster. In
both cases, the direction needs no further processing.

In searchLoop, the search starts from a saddle s, with
direction d and the field Vφ. Initially with ψ− = φ and
ψ+ = φ+ π

2 , two streamlines are traced in Vψ− ,Vψ+ and it is
checked whether

1. the two streamlines intersect,
2. both streamlines intersect previously extracted boundary

loops that belong to the same cluster.

While one of the conditions is met for ψ− and ψ+, the an-
gle difference is extended in steps of π

2i , i = 2, ...N up to
an angle close to π by testing streamlines for the angles
{ψ−− π

2i ,ψ+} and {ψ−,ψ+ + π

2i }. If one of them satisfies
the conditions, new angles ψ−,ψ+ are obtained, otherwise
the search failed. In practice, N = 8 proved to be sufficient
for all our examples.

If condition 1 was met in the last iteration, a new boundary
loop Γ is composed of the two last streamlines. If condition
2 was met, the cluster that was intersected by the two last
streamlines needs to be merged with the cluster of the saddle.

Streamline integration always starts at a saddle point in
direction of the eigenvector to the positive eigenvalue of the
vector field. As this direction is ambiguous with respect to
orientation, the direction must be specified. Two streamlines
in Vψ− ,Vψ+ with ψ− ≤ φ ≤ ψ+ are always traced simulta-
neously. If the specified direction for Vφ is d, the eigenvector
orientation for Vψ+ is chosen such that continuously increas-
ing the angle from φ to ψ+ would also continuously trans-
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Figure 5: Closed lines that are detected from 3 saddle
points. The 3 solid white boundary loops are detected di-
rectly. The black line consists of two streamlines that end
at the same cluster, and thus clusters the 3 solid loops. The
outer dashed line is detected after that clustering, and finally
the inner dotted line.

form that direction. This is achieved by choosing the eigen-
vector e+ of Vψ+ such that d×e+ > 0. The orientation of the
eigenvector for Vψ− is chosen analogously, e.g. e−×d > 0.

In Fig. 5 an example of the algorithm is given. The bound-
ary loops of the vortex region candidates are the result of the
extraction algorithm. The clustering is an internal support
structure, needed for the detection of boundary loops that
enclose other vortex region candidates.

4. Results

In Fig. 3(a) a complex shaped vortex region extracted with
the proposed algorithm is depicted. The shape of the region
is neither convex nor star-shaped, but has a smooth outer
boundary. The field with non-vanishing divergence exhibits
streamlines converging towards the critical point in the cen-
ter. Applied to slices in a 3D velocity field, in Fig. 6, contour
lines of the tip vortices of a rotating ship propeller are ex-
tracted. Note that the velocity field projected onto a slice is
not divergence-free.

A hierarchy of vortex regions is displayed in Fig. 1. In
Fig. 7 a vortex splitting event is shown in six snapshots of
a time-dependent simulation of the Kármán vortex street.
It depicts the flow situation directly behind a cylinder. The
large vortex on the lower part of the first image splits into
two vortices. One of them remains, the other separates and
moves downwards the flow. During the splitting, two inner
vortices emerge. They grow within the outer vortex region
until they fill the outer space and the two vortices are com-
pletely split.

For comparison of our results to methods based on star-
shaped regions, we refer to Fig. 8. The methods compute the

Figure 6: Tip vortices of a ship propeller are visualized as
boundary contours of 2D vortex regions of the velocity field
projected onto planes rotated around the axis of the ship pro-
peller. The LIC image depicts such a projected 2D velocity
field. Note that such a field is not divergence free.

(a) Our method

(b) λ2 < 0 [SRE05]

(c) Rankine vortex model [GTS∗04]

(d) Vortex strength [BPSS02]

(e) Vector field topology

Figure 8: Comparison of our method (a) to other meth-
ods (b)-(d) and to vector field topology (e). Star-shaped re-
gions are extracted and smoothed according to the indi-
cated method. The displayed slice of the data set consists
of 140×45 vectors.
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Figure 7: Extracted vortex regions in snapshots of a time-dependent flow behind a cylinder showing a vortex splitting event.
Very thin regions around inner vortices are due to small divergence of the field.

vortex extent in planes for given vortex cores. Star-shaped
regions are extracted based on thresholds of λ2 [SRE05], the
Rankine vortex model [GTS∗04] and regions with complex
eigenvalues of the velocity gradient tensor [BPSS02]. The
boundaries of these regions are smoothed, but still are ir-
regularly shaped. The regions extracted with our method are
larger compared to the other techniques.

A comparison to the geometric approach of Sadarjoen and
Post [SP00] is presented in Fig. 10, using the same data set.
Our approach handles nested vortex structures explicitly. In
the algorithm of Sadarjoen and Post it depends on parame-
ters of the clustering algorithm whether two nearby vortices
overlap, as it is the case e.g. on the right side, where ellipses
interfere. In this vector field with elongated and weak vor-
tices, the hierarchy of vortex regions is especially useful.
Both structures, small-scale inner vortex regions and large-
scale outer vortex regions are extracted and displayed simul-
taneously.

In Fig. 9 the extracted vortex regions are related to a phys-
ical definition of vortex regions in the style of the Rankine
vortex model. In this model the maximum tangential veloc-
ity defines the extent of a vortex. We computed the average
tangential velocity for all loops of a vortex region and used
the loop with maximum average velocity to define a Rankine
vortex region.

Using non-optimized software, the extraction of 500 vor-
tex regions in a field of 64×64 randomly generated vectors
takes 10 seconds on a laptop computer.

5. Discussion

Due to the ability of the presented method to extract vortex
regions hierarchically, the dependency of nested vortices is

explicitly known. This allows a viewer to see vortex merg-
ing or splitting events even in a single time step of a time-
dependent vector field. For example, a breaking vortex can
dominate, but also have smaller vortices inside, pointing to
transitional states, as exemplified in Fig. 7. This hierarchy
can be exploited for visually tracking such events in time-
dependent flows. The detection of a hierarchy is an integral
part of our method, which is in contrast to the feature track-
ing architectures proposed by Samtaney et al. [SSZC94] and
Reinders et al. [RPS01]. Therein the event-detection is sep-
arated from the feature extraction step.

The presented method is based on a purely geometrical
definition. However, the results coincide better with an in-
tuitive notion of a vortex region, as those based on phys-
ical quantities as λ2, the Rankine vortex model or vortex
strength as depicted in Fig. 8. One reason for this is, that
our method aims to extract the maximum region of swirling
flow, whereby physical founded definitions, e.g., a threshold
of λ2 < 0, often define the extent of a vortex core region, i.e.,
the center of swirling flow.

Because our definition for vortex regions is based on vec-
tor field topology, and therefore not Galilean invariant, the
frame of reference must be carefully chosen. This can be
mitigated by pre-processing the flow field to reveal the fea-
tures of interest. For example, if the velocity of the vortex
motion is known in advance, it can be subtracted. A general
method for unknown vortex motion is presented by Wiebel
et al. [WGS05], who propose to subtract the divergence- and
curl-free potential flow field in a region of interest. Any so-
lution that works for vector field topology works also for our
approach.

The ability of our method to handle fields with divergence
makes it directly applicable on 2D slices through a 3D field.
The tangential component in such a slice is not divergence-
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Figure 9: Outline of four Rankine based vortex regions.
Color coded is the average tangential velocity along the
loops of a vortex region. The white color denotes the local
maximum, defining the Rankine based vortex region.

free due to fluid motion perpendicular to the slice, even for
flows of incompressible fluids. Nonetheless, vortex regions
can be identified. In practice, 2D slices through 3D flow
fields are a useful tool, e.g. [GTWJ08, TGK∗04].

The Rankine vortex model complements our vortex re-
gion definition in a reasonable way. It is build on loops, e.g.
closed streamlines in rotated vector fields, and thus offer-
ing a natural way for the definition of a tangential direc-
tion. Those loops can be found at every point of a vortex
region. By choosing the loop with the maximum average
tangential velocity, the Rankine vortex regions are extracted.
The approach of Garth et al. [GTS∗04] is based on the as-
sumption of circular vortices, as the direction perpendicular
to the emitted ray is used as tangential direction. The ex-
tracted regions are non-smooth. Smoothing is done in post-
processing. In contrast, our vortex regions are constructed by
integrating the vector field, yielding regions that are an order
smoother as the interpolation of the original data values.

We assume to have only first-order critical points, but it
should be possible to extend our method such that it can han-
dle higher order singularities. Our extraction starts from the
saddle points of a vector field and uses the directions of the
separatrices to guide the search. Vector fields with higher or-
der singularities have similar topological structures, as dis-
cussed by Scheuermann et al. [SKMR98]. Given the sepa-
ratrices of such vector fields, the main idea of the extraction
algorithm, the sampling of directions with angles of π

2 , could
be directly applied to those vector fields.

The proposed algorithm detects all bounded regions that
end at the saddles of a vector field. In the current version
regions that touch the domain boundary are not detected au-
tomatically. Including the boundary switching points of the
vector field into the algorithm would improve the method to
detect regions that touch the boundaries. Note, though, that
boundary switching points move along the boundary if the
vector field is rotated, which might have some unforeseen
implications.

6. Conclusion and Future Work

We have introduced a method for extracting vortex regions
that is consistently based on streamlines of swirling motion
flow. The robust and parameter-free algorithm is able to ex-
tract complex-shaped vortex regions independently of the
presence of divergence. Adjacent vortices are separated and
hierarchical vortex structures in complex vortex systems can
be revealed. The algorithm is grid-independent, up to rou-
tines for streamline tracing and critical point detection.

Our results suggest that the extracted vortex regions might
be particularly useful for analyzing vortex dynamics on a
structural level. Various applications are possible, e.g. mea-
suring vortex sizes and strengths, monitoring splitting and
merging events, or representing vortex evolution of time-
dependent flow fields in event graphs. Utilization of the
method to real world applications needs to be investigated.

Another application is to utilize the knowledge gained
with the presented method for enhancement of vector field
topology depictions. Separatrices of vector fields tend to ag-
glomerate in the vicinity of vortical regions. Explicit know-
ing of the vortex regions might help to avoid clutter there.

Although we have so far applied our region definition only
to regions that exhibit some kind of swirling behavior, the
restriction to swirling motion is not part of the definition of
vortex region candidates. The extraction method could be
applied in the same way for non-swirling regions, even for
rotation-free gradient vector fields. The question then is, how
to interpret the results.
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