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Abstract. This paper presents a computational framework that allows
for a robust extraction of the extremal structure of scalar and vector
fields on 2D manifolds embedded in 3D. This structure consists of criti-
cal points, separatrices, and periodic orbits. The framework is based on
Forman’s discrete Morse theory, which guarantees the topological con-
sistency of the computed extremal structure. Using a graph theoretical
formulation of this theory, we present an algorithmic pipeline that com-
putes a hierarchy of extremal structures. This hierarchy is defined by an
importance measure and enables the user to select an appropriate level
of detail.
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1 Motivation

We propose a computational framework to extract the extremal structure of
scalar and vector fields on 2D manifolds embedded in R

3. The extremal struc-
ture of a scalar field consists of critical points and separatrices – the streamlines
of the gradient field that connect the critical points. The extremal structure of a
vector field additionally includes periodic orbits – the streamlines that are closed.

These structures are of great interest in many applications and have a long
history [2, 12]. Typically, the critical points are computed by finding all zeros
of the gradient or vector field. The critical points of a scalar field are classified
into minima, saddles, and maxima by the eigenvalues of its Hessian, while the
critical points of a vector field are classified into sinks, saddles, and sources by
the eigenvalues of its Jacobian. The respective eigenvectors can be used to com-
pute the separatrices as the solution of an autonomous ODE. For the numerical
treatment of these problems and the extraction of the periodic orbits, we refer
to [18, 20, 5].

One of the biggest challenges that such numerical algorithms face is the dis-
crete nature of the extremal structure which necessitates a lot of binary decisions.
For example, the type of a critical point depends on the sign of the eigenvalues.
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Depending on the input data, the resulting extremal structure may therefore
strongly depend on the algorithmic parameters and numerical procedures.

From a topological point of view this can be quite problematic. Morse theory
relates the extremal structure of a generic function to the topology of the man-
ifold, e.g. by the Poincaré-Hopf Theorem, or by the strong Morse inequalities
[13]. The topology of the manifold therefore restricts the set of the admissible
extremal structures.

Forman has developed a discrete version of Morse theory [7, 8] for cell com-
plexes. A gradient or vector field is therein directly encoded in the combinatorial
structure of the cell complex, and their extremal structure is defined in a combi-
natorial fashion. A finite cell complex of a 2D manifold can therefore only carry
a finite number of combinatorial (gradient) vector fields, and their respective
extremal structure is consistent with the topology of the manifold.

The basic idea of our computational framework is to compute a combinato-
rial (gradient) vector field that represents our input data. Its extremal structure
can then be easily extracted and is always consistent with the topology of the
manifold. This topological consistency greatly improves the robustness of our
algorithm. In some sense it serves as an error correcting code: a single misclassi-
fication of a critical point cannot occur, as this would result in an inadmissible
extremal structure.

Note that the first implementation of Forman’s theory was presented by
Lewiner [11]. His combinatorial (gradient) vector fields were thereby based on
the construction of hypergraphs and hyperforests.

For the purpose of data analysis, the computed extremal structure is in gen-
eral too complex. This is especially true if one deals with noisy data. One is
therefore interested in a meaningful and consistent simplification of the extremal
structure. Our framework allows for this by computing a sequence of combina-
torial (gradient) vector fields that represents the input field. The user is then
able to select an appropriate level of detail to efficiently analyze the data.

2 Computational Discrete Morse Theory

This section begins with a short introduction to discrete Morse theory in a graph
theoretical formulation. We then formulate an optimization problem that results
in a hierarchy of combinatorial (gradient) vector fields representing a given (gra-
dient) vector field [14]. For simplicity, we restrict ourselves to 2D manifolds while
the mathematical theory for combinatorial (gradient) vector fields is defined in
a far more general setting [7, 8].

Let C denote a finite regular cell complex [9] of a 2D manifold. In this paper,
we call a cell complex regular if the boundary of each d-cell is contained in a
union of (d − 1)-cells.
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Fig. 1. Basic definitions. a) a combinatorial vector field (dashed) on the cell graph of a
single triangle. The numbers correspond to the dimension of the represented cells, and
matched nodes are drawn solid. b) a critical point of index 0. c) a 0-separatrix. d) an
attracting periodic orbit.

Examples of such cell complexes that arise in practice are triangulations or
quadrangular meshes. We first define its cell graph G = (N, E), which encodes
the combinatorial information contained in C in a graph theoretic setting.

The nodes N of the graph consist of the cells of the complex C and each
node up is labeled with the dimension p of the cell it represents. The edges E
of the graph encode the neighborhood relation of the cells in C. If the cell up is
in the boundary of the cell wp+1, then ep = {up, wp+1} ∈ E. Note that we label
each edge with the dimension of its lower dimensional node.

A subset of pairwise non-adjacent edges is called a matching. Using these
definitions, a combinatorial vector field V on a regular cell complex C can be
defined as a matching of the cell graph G (see Figure 1a). The set of combinatorial
vector fields on C is thereby given by the set of matchings M of the cell graph G.

We now define the extremal structure of a combinatorial vector field. The
unmatched nodes are called critical points. If up is a critical point, we say that
the critical point has index p. A critical point of index p is called sink (p = 0),
saddle (p = 1), or source (p = 2). A combinatorial p-streamline is a path in the
graph whose edges are of dimension p and alternate between V and its comple-
ment. A p-streamline connecting two critical points is called a p-separatrix. If a
p-streamline is closed, we call it either an attracting periodic orbit (p = 0) or
a repelling periodic orbit (p = 1). An illustration of the combinatorial extremal
structure is shown in Figure 1.

As shown in [4], a combinatorial gradient vector field V φ can be defined as
a combinatorial vector field that contains no periodic orbits. A matching of G
that gives rise to such a combinatorial vector field is called a Morse matching.
The set of combinatorial gradient vector fields on C is therefore given by the set
of Morse matchings Mφ of the cell graph G. In the context of gradient vector
fields, we refer to a critical point up as a minimum (p = 0), saddle (p = 1), or
maximum (p = 2).
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We now define the optimization problem that results in a meaningful combi-
natorial representative of our input data f . Assume that f leads to edge weights
ω : E → R – we postpone their computation to Section 3.2. Assume further
that f is represented well if the weight of the matching is high. We can then
compute a combinatorial vector field to represent f by finding the maximum
weight matching in G

V = arg max
M∈M

ω(M). (1)

If we want to compute a combinatorial gradient vector field V φ we simply
replace M by Mφ. Note that this restriction of the admissible matchings makes
(1) an NP-hard problem in general [10].

Due to the matching property, the number of critical points is given by
|N | − 2 |V |. We can therefore compute a combinatorial vector field with a pre-
scribed number of critical points by computing

Vk = arg max
M∈M, |M|=k

ω(M). (2)

Let k0 = |V | denote the size of the maximum weight matching, and let
kn = maxk∈N |Vk| denote the size of the heaviest maximum cardinality match-
ing. From a data analysis point of view, Vk0 is a fine grained while Vkn is the
coarsest possible representation of the input data f . A hierarchy of combinatorial
(gradient) vector fields V can now be defined as the the sequence of matchings

V = (Vk)k=k0,...,kn
. (3)

The main task of our computational framework is to compute the sequence (3).

3 Algorithmic Pipeline

Our computational framework consists of five main parts, which the following
subsections describe in detail.

3.1 Input Data

Our computational framework requires as input a finite regular cell complex of
a 2D manifold embedded in R

3 and a scalar or vector valued function f . We
assume that f is defined on the 0-cells of the complex. Because we will later
need data values on all cells, we extend f to the higher dimensional cells by
taking the average value of the incident lower dimensional cells.
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3.2 Edge Weighted Cell Graph

Using the regular cell complex, we first construct its cell graph G = (N, E)
as defined in Section 2. A spatial embedding c : N → R

3 of G can be defined
using the embedding of the cell complex in R

3. The embedding of the nodes that
represent higher dimensional cells is thereby computed by taking the average of
the coordinates from the incident lower dimensional cells.

We now define the edge weights ω : E → R of this graph. In Section 2 we
assumed that f is represented well by a matching M , if the weight of M is large
(1). Let ep = {up, wp+1} denote an edge of the graph. If ep is a matching edge it
can be thought of as an arrow pointing from up to wp+1. We therefore assign a
large weight to ep if such an arrow reflects the flow behavior f well. In this paper,
we propose to measure the tangential flow of f along ep to achieve this. Using
Stokes Theorem, the edge weight ω for scalar input data f is thereby defined by

ω(ep) = f(wp+1) − f(up), (4)

whereas in case of vector field data f (assuming linear interpolation), its edge
weight is defined by

ω(ep) =
(
f(wp+1) + f(up)

) · (c(wp+1) − c(up)
)
/2. (5)

3.3 Matching Sequence

Given the edge weighted cell graph G, we now compute the sequence of maxi-
mum weight matchings (3). We begin with an algorithm for the vector field case
M. We then use the introduced notation to describe an algorithm that approx-
imates (3) for the scalar field case Mφ.

Due to the assumed regularity of the cell complex C, the cell graph G is
bipartite – a simple bipartition can be derived from the dimension of the rep-
resented cells. We can therefore employ the Hungarian method. This method is
usually employed to compute Vk0 , but can be directly applied to compute (3).

The following presentation of the Hungarian method closely follows [16]. The
basic idea is to start with V0 and then to iteratively compute the sequence (2).
In each iteration, the augmenting path of maximum weight is computed. An
augmenting path of a matching Vj is a path in the graph whose start and end
nodes are not covered by the matching and whose links alternate between Vj and
its complement. The weight of an augmenting path is defined as the alternating
sum of the weights of its links. Given an augmenting path p of maximum weight
we can augment the matching Vj to get Vj+1 by taking the symmetric difference
� of Vj and p. For an efficient computation of the augmenting path of maximum
weight we refer to [16].

To store the sequence of matchings (3) efficiently, we only store Vkn and the
sequence of augmenting paths that lead from Vk0 to Vkn [14]. Because the aug-
menting paths of edge weighted cell graphs are usually rather short, this is a lot
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more efficient in our context than storing all matchings of (3) individually.

The computation of (3) for the scalar field case Mφ is a lot more involved
– in general it is NP-hard [10]. We therefore propose a simple approximation
algorithm for this problem. The basic idea is to make use of Forman’s cancellation
theorem [8]. Using the graph theoretic formulation introduced in Section 2 this
theorem can be stated as follows:

If two unmatched nodes are connected by a unique p-separatrix s in a Morse
matching M ∈ Mφ, then M � s is a Morse matching.

The pseudo code for our approximation algorithm is shown in Algorithm 1.
The input consists of the cell Graph G and its edge weights ω. The output con-
sists of V φ

kn
and a list of augmenting paths. Together, these can be used to recon-

struct an arbitrary element of the sequence (3). The subfunction
getMaxUniqueSeparatrix(. . .) returns the unique p-separatrix of maximum
weight of the saddle u1. The 2D manifold structure of the cell graph G im-
plies that at most four p-streamlines emanate from u1 and that these cannot
split. The subfunction getMaxUniqueSeparatrix(. . .) therefore simply iterates
all (up to four) p-separatrices that start in u1. It then checks for uniqueness by
comparing their end nodes and returns the unique p-separatrix with the largest
weight. If there is no unique p-separatrix at all, then an empty path is returned
with a weight of −∞. Note that there are always two 0-streamlines emanat-
ing from u1 and that these are always 0-separatrices. The 1-streamlines that
emanate from u1 however may end in the boundary of the manifold.

Algorithm 1 MorseMatchingSequence(G, ω)

Output: AugPaths, V φ
kn

1: M ← ∅, AugPaths← ∅, heap← ∅
2: for all u1 ∈ N do
3: (path,weight)← getMaxUniqueSeparatrix(G,ω, M, u1)
4: heap.push(u1, weight)
5: while heap �= ∅ do
6: (u1, weight)← heap.pop()
7: (path,weight)← getMaxUniqueSeparatrix(G,ω, M, u1)
8: (nextNode, nextWeight)← heap.top()
9: if weight ≥ nextWeight then

10: M ←M � path
11: if weight < 0 then
12: AugPaths.push(path)
13: else if −∞ < weight then
14: heap.push(u1, weight)
15: V φ

kn
←M
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Line 1 initializes M as the empty matching, the list of augmenting paths
AugPaths, and a priority queue heap. All nodes representing 1-cells are then
inserted into this queue, ordered by the weight of their heaviest unique p-
separatrix, in Lines 2-4. We then iterate over the queue (Line 5), remove the
top element of the heap (Line 6) and compute its heaviest unique p-separatrix
(Line 7). This is necessary, as previous iterations may have affected this node.
We now check whether this p-separatrix is the heaviest of all available unique p-
separatrices. Assuming that augmenting the matching only decreases the weight
returned by getMaxUniqueSeparatrix(. . .), it suffices to check whether the
weight of u1 is larger than the weight of the next element of the heap (Lines
8-9). If this is the case, we augment the matching M by taking the symmet-
ric difference of M and path (Line 10), and store the augmenting path if its
weight is negative (Line 11-12). Otherwise, we reinsert u1 into the heap with its
new weight if it is larger than −∞ (Line 13-14). When the heap is empty the
algorithm terminates and returns an approximation of the heaviest maximum
cardinality Morse matching V φ

kn
.

3.4 Combinatorial (Gradient) Vector Field

The heaviest maximum cardinality (Morse) matching Vkn and the list of aug-
menting paths computed in the Section 3.3 allows for the reconstruction of an
arbitrary element of the sequence (3). Each matching can be restored by itera-
tively taking the symmetric difference of Vkn with the augmenting paths. This
enables the user to select a combinatorial (gradient) vector field with prescribed
number of critical points.

Alternatively, we can make use of the associated weight of each matching
as an importance measure. The user can set a fraction θ ∈ [0, 1] to select
a combinatorial (gradient) vector field with a weight as close as possible to
ω(Vk0) + θ (ω(Vkn) − ω(Vk0)). This approach can be useful in dealing with noisy
data. Noise induces a very complex extremal structure. The augmenting paths
corresponding to the spurious extremal structure, however, have a very large
weight. Setting θ to a small value therefore removes all spurious extremal struc-
tures while the dominant structure remains unchanged.

Note that taking the symmetric difference of a matching M with an augment-
ing path corresponds to the cancellation of a pair of critical points. In the scalar
case, the weight of such an augmenting path equals the difference of the scalar
values of these two critical points. The above importance measure is thereby
closely related to the persistence measure in [6].

3.5 Extremal Structure

Given a combinatorial (gradient) vector field, we can now extract its extremal
structure. As the critical points are the unmatched nodes up they can be easily
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a) b) c)

Fig. 2. Synthetic noisy scalar field. Extremal structure of a) V φ
k0

, b) V φ
kn−23 and c)

V φ
kn−11. Minima, saddles and maxima are depicted as blue, yellow and red spheres,

while 0-separatrices and 1-separatrices are shown as blue and red lines.

extracted. The classification into sources, saddles, sinks (minima, saddles, max-
ima) is given by p. To compute all separatrices, we iterate over all saddles u1

and compute the incident p-separatrices.
In the vector case, we also need to extract all periodic orbits. Due to the 2D

manifold structure, p-streamlines can not split when the first node is a 1-node.
Therefore, the extraction of periodic orbits is quite simple. First, we iterate over
all 1-nodes. Given a node u1, we start the computation of the p-streamlines that
emanates at u1. Each streamline is continued as long as the following node w1

is not yet labeled, in which case it is labeled with u1. If the label of w1 equals
u1 we add w1 to a set of seed points. We then iterate over all seed points to
compute all periodic orbits.

4 Examples

In this section, we present three applications of the computational framework
presented in Section 3. The framework was implemented as a module in the
visualization and data analysis software Amira [17]. It can be made available
to researchers for evaluation purposes. The integrated visualization capability of
Amira was used to assess the relevance of the computed extremal structures and
the practical quality of the approximation Algorithm 1.

The visualization of the abstract representation of the input data as a match-
ing in an edge weighted graph proved to be very useful in the development of
correct and efficient algorithms.

We first illustrate the ability to extract the extremal structure of a scalar field
where noise is present. We then apply our framework to a vector field on a 2D
manifold to show the physical relevance of the hierarchy of extremal structures
(3). The paper is concluded with an application to extremal lines of curvature
fields of a discrete 2D manifold. All examples were computed on a workstation
containing an Intel Core i7 860 CPU.
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a) b) c)

Fig. 3. Vector field from biofluid mechanics. The vector field is visualized using the
streamline seeding technique described in [15]. The extremal structures of a) Vk0 , b)
Vkn−4 and c) Vkn are shown. Sinks, saddles and sources are depicted as blue, yellow
and red spheres. 0-separatrices and attracting periodic orbits are depicted as blue lines,
while 1-separatrices and repelling periodic orbits are shown as red lines.

4.1 A Synthetic Noisy Scalar Field

To illustrate the robustness of our data analysis framework, we applied it to
a synthetic data set depicted as a height field in Figure 2. The data set was
produced by sampling the analytic function f : [−1, 1]2 → R

f(x, y) = sin(10 x) sin(10 y) e−3 (x2+y2) (6)

on a uniform triangulation with 16k vertices. We then added uniform noise in
the the range of [−0.05, 0.05] to the sub domain [0, 1] × [−1, 1]. We applied our
algorithmic pipeline presented in Section 3 to this input data. The runtime for
the computation of (3) using Algorithm 1 was less than a second on a standard
workstation. Figure 2 shows the extremal structure of the initial combinatorial
gradient field V φ

k0
, and two elements, V φ

kn−23 and V φ
kn−11, of the matching se-

quence (3). As can be seen in Figure 2a, V φ
k0

includes the extremal structure
induced by the noise. The simplified combinatorial gradient fields, however, only
contain the dominant extremal structure present in f .

4.2 A Vector Field from Biofluid Mechanics

Figure 3 depicts a surface velocity field of a simulation of blood flow through
a cerebral aneurysm done by the Biofluid Mechanics Lab of the Charité - Uni-
versitätsmedizin Berlin [3]. The cell graph of the triangulation consists of 60k
nodes. The runtime for the computation of (3) using a simple implementation
of the Hungarian method was about 30 minutes.

The critical points in this vector field are stagnation points and thus of inter-
est for the flow analysis. Our algorithm delivers a hierarchy of extremal struc-
tures which captures the dominant nature of the flow (see Figure 3 bottom-left).
The blood enters the aneurysm at the bottom, and leaves it horizontally. This
behavior is found by our algorithm and the global separation on the surface is
extracted. This reduced flow structure may serve as a basis when comparing
different cerebral aneurysms.
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a) b) c)

Fig. 4. Extremal lines in curvature fields. For all surface models, the first and second
principal curvatures κ1 and κ2 are computed. a), b) and c) show the most dominant
parts of 0-separatrices (blue) in κ1 and 1-separatrices (red) in κ2.

4.3 Extremal Lines in Curvature Fields

Figure 4 illustrates the extraction of extremal lines in curvature fields of differ-
ent surfaces. As described in [19], each point of a p-separatrix can be assigned
an importance value, called separatrix persistence. The main idea of separatrix
persistence is to measure the strength of monotony breaks with respect to the se-
quence of combinatorial gradient vector fields (3). For details how to incorporate
this measure into our computational pipeline, we refer to [19].

Separatrix persistence allows to discriminate spurious from dominant ex-
tremal lines. These lines are shown in Figure 4. Note that a reduction to the
most dominant extremal parts destroys the connectivity of the extremal struc-
ture. The total running time for the computation of (3) using Algorithm 1 and
the computation of separatrix persistence is shown in Table 1. The worst case
complexity of Algorithm 1 is O(n3), where n denotes the number of edges in the
triangulation. However, the empirical running time for practical applications is
almost linear. The models are provided by Aim@Shape [1].

Surface Model triangles nodes in G edges in G time (sec)

screwdriver 54300 162902 325800 1
dinosaur 112384 337154 674304 2

knot 957408 2872224 5744448 24

Table 1. Running time for Algorithm 1 with separatrix persistence [19] computation.
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