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ABSTRACT

This work introduces a novel streamline seeding technique based on
dual streamlines that are orthogonal to the vector field, instead of
tangential. The greedy algorithm presented here produces a net of
orthogonal streamlines that is iteratively refined resulting in good
domain coverage and a high degree of continuity and uniformity.
The algorithm is easy to implement and efficient, and it naturally
extends to curved surfaces.

Keywords: Streamline placement, Flow visualization, Dual
streamlines, Surface vector fields.

Index Terms: I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1 INTRODUCTION

CFD based flow visualization and analysis is nowadays a standard
technique in many different application areas from technical engi-
neering to life science research. For visual analysis of flow phe-
nomena, among other aspects, tangent vector fields on 2D domains
are especially important for at least two reasons. First, analyzing
velocity fields in planar slice cuts of a flow domain is very com-
mon in practice, as these cuts provide a good overview and can be
compared to experimentally observable Particle Image Velocime-
try (PIV) measurements. Second, flow phenomena in near wall re-
gions, i.e. close to fixed geometries that act as boundaries, are very
important and mainly motivated our research. For instance, the tan-
gent vector field of the shear stress at the curved boundary surface
of a flow domain provides insight to important flow phenomena of
viscous fluids like vortex formation and flow separation.

Several approaches for the visualization of tangent vector data
on 2D surfaces exist, ranging from simple hedgehog plots to ad-
vanced feature extraction methods. Among them, streamline based
methods are widely accepted for depicting flow at a glance. In con-
trast to texture based methods like line integral convolution (LIC),
streamlines provide sparse visualizations that focus on significant
structures and can thus be combined with other visualization tech-
niques, or used to compare vector fields. Additionally, streamlines
can be annotated with glyphs showing the flow direction or can be
scaled, for example by the velocity magnitude.

The key problem of streamline based methods, which we will
refer to as the streamline placement problem, consists of finding
a good representative set of streamlines depicting the vector field
visually comprehensibly and completely. To evaluate the quality of
our results and compare them to other approaches, we refer to the
following general criteria, proposed by Verma et al. [21]:

Coverage: No important features of the vector field should be
missed and the streamlines should cover the whole domain.
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Figure 1: Overlay of primal (black) and dual (blue) streamlines.

Uniformity: The distribution of streamlines should be more or less
uniform across the domain.

Continuity: Long continuous streamlines are preferred over short
ones.

CONTRIBUTIONS

For solving the streamline placement problem, we propose a greedy
algorithm, based on the idea of dual vector fields to guide the seed-
ing process. Our main contribution resides in the introduction of
dual streamlines that run orthogonal to the given vector field as op-
posed to primal streamlines that run tangential. Since seeds for new
streamlines are only placed along these curves, the search space for
seed placement is reduced to a set of curves. This applies to pla-
nar and curved surfaces alike. Monitoring interaction between the
two sets of streamlines enables us to fully saturate the domain with
streamlines, approximate and optimize streamline density distribu-
tion and infer a simple, yet effective streamline termination strategy.

Dual Streamline Seeding comes with the following advantages:

• The algorithm has only a single parameter that controls
streamline density.

• The approach naturally extends to curved surfaces without the
need of surface parametrization.

• All distances used are based on arc length. Thus, we avoid
explicit computation of geodesic distances.

• Use of topology highlights important features, even at low
streamline density.



2 RELATED WORK

Good overviews of flow visualization techniques in general can be
found in Laramee et al. [8] and Post et al. [16]. In the following,
we focus on streamline based flow visualization on 2D surfaces.
A number of techniques with different objectives have been devel-
oped. We present them grouped into four categories: image based,
direct, feature based and vector field dependent. Our contribution
is closely related to the direct approaches.

Image based approaches define an energy function for the
streamlines in image space and search for a minimum. Turk and
Banks [20] use a low-pass filtered image of the streamlines to mea-
sure the deviation from a predefined saturation level across the im-
age. Starting from an initial streamline set, the energy is minimized
by iteratively lengthening, shortening, deleting, or moving stream-
lines in a global optimization process. Due to the large number
of possible operations in each step, the method exhibits exponen-
tial running time. Visual appeal, uniformity and continuity of the
streamlines is superior and serves as the benchmark for our method.
Mao et al. [12] extend this approach to parametrizable curved sur-
faces in 3D. For the computation of the local filter size, they make
use of the deformation tensor of the parameter space mapping.
Schlemmer et al. [19] introduce an image based approach where
the streamline density is steered by a user defined density function.
They use a greedy algorithm where new streamlines are added one
by one.

Direct methods place new streamlines with a certain heuristic
that is expected to provide good overall seeding results without
computing a global energy function. Jobard and Lefer [3] achieve
good streamline uniformity, but streamline lengths, and thus conti-
nuity is unsatisfactory. They start new streamlines at a separation
distance apart from all previously computed streamlines until the
domain is fully covered. The technique is extended to unsteady
flows in [4], its application for multiresolution flow visualization is
described in [5]. The method proposed by Liu et al. [11] improves
continuity by prioritizing streamline elongation over new stream-
line insertion. The seeding strategy presented by Mebarki et al.
[15] is closest to our approach. In a greedy algorithm, they start
new streamlines in the center of the biggest remaining voids, and
achieve good continuity and uniformity of the streamlines. Simi-
larly, we search for the largest uncovered areas approximately on
dual streamlines and start new streamlines at the midpoint of those
segments. Mebarki et al. make heavy use of Delaunay triangula-
tion, which makes their approach hard to apply on curved surfaces
in 3D.

Verma et al. [21] present a feature based approach that strives for
good coverage of the vector field topology by using fixed seeding
templates in the vicinity of the critical points. The template size is
determined by a Voronoi decomposition of the domain. Remaining
voids are filled by a Poisson random seeding.

Vector field dependent methods focus on coverage of important
features by defining similarity measures for streamlines and adding
new streamlines at places with great streamline differences. Chen et
al. [1] propose a metric based on the distance, shape and orientation
of nearby streamlines, Li et al. [9] propose a metric based on a
distance transformation of the streamlines.

Most of these seeding techniques are primarily developed for
planar 2D domains. Their application on curved surfaces embedded
in 3D space is often not obvious, as distance and similarity mea-
sures are harder to compute. We propose an algorithm that does not
rely on planarity of the domain. Thus, we form a bridge between
methods for planar 2D domains and intrinsic 3D methods, as sug-
gested by Salzbrunn and Scheuermann [18], Mattausch et al. [13],
Ye et al. [22], and Li and Shen [10].

Figure 2: Outline of algorithm behavior. Left: largest segment be-
longs to blue set (arrow), a new streamline for the black set will be
started at its midpoint. Middle: new streamline has been inserted
(shown as dotted line). Now, black set contains the largest segment
(arrow), whose midpoint will again serve as seed point for the next
streamline. Right: result of next streamline insertion. Newly inserted
streamline is drawn dotted.

3 DUAL STREAMLINE SEEDING

Our algorithm takes as input a surface embedded in 3D, a tangent
vector field v ∈ R3 and a surface normal field n ∈ R3. The two
fields are often – but not necessarily – given as a discrete set of
tangent data vectors, a set of surface normals and an associated in-
terpolation scheme, such that v as well as n can be evaluated at
each point on the surface. Furthermore, user-supplied separation
distance δ defines the minimal distance between a seed and a neigh-
boring streamline and thus controls the resulting streamline density.
Our algorithm outputs a set of streamlines, which satisfy the quality
criteria listed in Sect. 1.

For solving the streamline placement problem, we manage two
sets of streamlines simultaneously:

Primal Streamlines are curves inside the domain of v that are tan-
gential to v at every point. These streamlines form our result.

Dual Streamlines are curves inside the domain of v that are tan-
gential to the dual field R(v) := v× n, i.e. orthogonal to v at
every point. They are auxiliary streamlines, i.e. they are not
visible in the resulting image.

Intersections between primal and dual streamlines subdivide a
streamline into consecutive segments. These segments are key to
our algorithm. We denote the set of primal streamline segments
as P and the set of dual segments as D. Each set is represented
by a priority queue ordered by the arc length of a segment. In the
following, the term streamline refers to primal and dual streamlines
alike.

Given suitable starting sets for P, D (see Sect. 3.1), our greedy
seeding algorithm works as follows: In each iteration, the longest
remaining segment is detected and a new bidirectional streamline is
started from its midpoint in orthogonal direction. Fig. 2 illustrates
this process. The algorithm terminates when no segment longer
than 2δ remains.

Considering both sets of streamlines at the same time and keep-
ing track of mutual intersections gives a good hint on the overall
density distribution. We postulate:

Long streamline segments without intersection indicate
voids in the dual streamline set.

This is the central justification for our approach, because it bears
a directive for seed placement. The next seed for a streamline in
P should be placed at the center of the longest remaining segment
in D and vice versa. This procedure enables us to efficiently find
voids based on a one-dimensional distance metric (arc length) in-
stead of Euclidean distance in image space or geodesic distance.
This makes our approach very suitable for curved surfaces, where
other measures are hard to apply correctly or are computationally



Figure 3: Initial set of dual streamlines, i.e. dual topology shown as
dotted lines. The vector field is shown via LIC. Although the ini-
tial density distribution is non-uniform, a good starting coverage is
achieved and uniformity of primal streamlines is not affected.

expensive. Note that our greedy choice is only locally optimal, i.e.
only in terms of the given 1D distance metric and the above pos-
tulate. The next seed is thus not necessarily put in the largest 2D
void, but each additional streamline improves the approximation.

3.1 Initialization

To start our iterative seeding process, we need a first set of stream-
lines as initialization. This starting configuration should guarantee
accessibility of all points inside the domain through a series of iter-
ations, as described in Sect. 3.2 irrespective of the vector field struc-
ture. Although a non-uniform arrangement in the initial streamlines
will be balanced in the course of the algorithm, a good starting con-
figuration also significantly reduces processing time. A structure
that matches all these requirements is vector field topology.

We thus compute an initial set of dual streamline segments D by
extracting the topological skeleton of R(v), see e.g. [2]. This gives
a reasonable starting coverage of the domain and good coverage of
all critical points. Fig. 3 shows the result of initialization on an
artificial vector field.

In the rare case that this initialization fails to produce any start-
ing curves, i.e. if v possesses no topology, we initialize D by tracing
a small number of randomly seeded streamlines in R(v). Actually,
a single dual streamline would suffice at this point, but an unfavor-
able seed location would slow down algorithm convergence. For all
examined cases, the use of five of these streamlines is sufficient.

After D has been initialized, P is initialized analogously with
the topological skeleton of v, which ensures clearly visible sepa-
ratrices especially at very low densities. Note that initializing P
includes intersection tests and streamline termination, as described
in the following sections. If the emphasis of topological structure is
not desired, P can be initialized empty. Fig. 4 compares these two
alternatives.

3.2 Iteration

Each iteration consists of two major parts:

1. Extract the longest segment from P or D. The midpoint of this
segment will serve as the next seed.

Figure 4: Effects of different initializations. Left: P empty, Right: P
initialized with topology of the vector field. The latter option provides
clearly visible separatrices and guarantees conservation of percepti-
bility of topological structure at low densities.

2. Trace a new streamline in forward and backward direction and
test for intersections.

For illustration, let s ∈ D be the longest remaining segment.
Now, starting from the midpoint of s, a new primal streamline is
traced in v. Intersections with segments in D split them into smaller
segments at the intersection point. The currently traced streamline
is also divided into segments at those intersection points. The newly
traced segments are added to P.

If s ∈ P, the process is analogous, resulting in new streamline
segments for D tested for intersection against all segments in P.

Avoiding clutter

Each streamline-based approach faces the problem of clutter, i.e.
streamlines cluster at certain points or along certain lines in the
field. These clusters are distracting if they do not coincide with
topological features of the field and should thus be avoided.

Similar to the seed criteria, we use the arc length of intersected
streamline segments as termination condition. Each time an inter-
section between the currently traced streamline and another seg-
ment is encountered, the minimal distance d to one of the segment’s
endpoints is determined. If d falls below the termination distance
δterm, tracing is stopped. δterm is set relative to δ , a value of δ

2
worked well for all our examples.

Note that d is measured in arc length. Thus, contrary to standard
Euclidean distance metric or similarity distance [1], it is directly
applicable on curved surfaces.

3.3 Termination

The algorithm terminates if no voids are left in either of the two
segment sets. According to our main postulate, this corresponds to
an upper bound on the length of all remaining streamline segments.
This upper bound is set to 2δ and controls the density of the result-
ing streamline image. More formally, the termination condition can
be formulated as:

∀p ∈ P : ||p||< 2δ ∧∀d ∈ D : ||d||< 2δ .

4 RESULTS

In this section, we present the results of our technique and compare
them – where applicable – to other seeding methods on artificial
vector fields and CFD data. We implemented the method of Verma
et al. [21] and use an implementation of Mebarki et al. [15], which
is freely available [14]. For comparison to the techniques of Turk
and Banks [20] and Jobard and Lefer [3], we use pictures from [3]
by courtesy of the authors. Where possible, we further compare
running times.



(a) Turk/Banks

(b) Jobard/Lefer

(c) Mebarki et al.

(d) Dual Seeding

Figure 5: Comparison of streamline placement techniques with decreasing densities. Separation distance from left to right: 0.84%, 1.68%,
3.36% of domain width. Pictures on the first two rows were provided by the authors of [3].



Figure 6: Swirling jet entering fluid at rest. Depicted is a planar slice of a 3D velocity field. Separation distance is 0.5% (left) and 1.5% (right) of
domain width. Areas of turbulent and laminar flow are well distinguishable at both densities.

4.1 Planar Domains

In the following, we compare Dual Streamline Seeding to four other
streamline placing algorithms methods, representing three classes
of seeding techniques:

• image-based optimization [20],

• direct seeding [3] and [15], and

• feature-based [21].

As discussed in Sect. 1, quality criteria for streamline placement
are uniformity, continuity, coverage. In the following examples,
coverage of important flow features is given with all five methods,
thus, we will focus on continuity and uniformity. Sect. 5 contains
further discussion on coverage. Since there is no standard to com-
pare continuity and uniformity quantitatively, we compare the re-
sults visually.

Fig. 5 compares our technique to the listed image based and di-
rect approaches. In terms of continuity, our algorithm gives com-
parable results to the Farthest Point technique and the method of
Turk/Banks and better results than the algorithm of Jobard/Lefer.
The latter tends to produce short, separated streamlines along the
same path of the flow where the viewer would expect one con-
tinuous streamline. This should be avoided to give an impres-
sion of flow coherency in a steady flow. Our algorithm does not
enforce overall uniformity of streamline density as strictly as the
other methods. Especially, clutter control is less regular than with
Euclidean distance measure, which is employed by the other ap-
proaches. On the other hand, the resulting local deviation of density
leads to a better accentuation of the critical points, as discussed in
Sect. 5.

Fig. 6 demonstrates results for different separation distances on
a planar cut of a 3D vector field. It contains 12,524 data vectors and
results from a simulation of a swirling jet entering fluid at rest. De-
spite the topological complexity of the data set, regions of laminar
and turbulent flow can well be distinguished. Neither do the turbu-
lent areas, which are densely covered by dual streamlines, exhibit
cluttering, nor are there any voids in areas of laminar flow.

Fig. 7 compares Dual Seeding to the flow-guided seeding strat-
egy of Verma et al. with additional Poisson-distributed seeds to fill
the voids. Our algorithm gives better results in terms of continuity
and uniformity, especially with high densities. Without additional
seeds, the approach of Verma et al. lacks coverage for regions with-
out critical points. On the other hand, the additional seeds further
diminish continuity and uniformity.

(a) Verma/Kao/Pang00 (b) Dual Seeding

Figure 7: Comparison to feature-based technique by Verma et
al. Separation distances: top 2%, bottom 3.5% of domain width.
Poisson-distributed seeds employed by Verma et al. introduce signif-
icant discontinuities, whereas Dual Seeding results in long continu-
ous streamlines, while still capturing topological features.

Figure 8: Overlay of wall shear stress streamlines and color-coded
pressure distribution on a cerebral aneurysm. Critical points are high-
lighted by small spheres.



Figure 9: Comparison of experimental flow and CFD results of a cerebral aneurysm. Particle traces of the near wall flow are shown in the
background [6], the wall-shear-stress vector field of a roughly aligned CFD model is depicted with red streamlines. The comparison shows a
good agreement of the fields.

Figure 10: Streamlines of the wall shear stress on a ship propeller. Left: Pressure side, Right: Suction side. Flow separation can be observed at
the tip of the blades at the suction side.



Separation Verma Mebarki Dual
distance et al. [21] et al. [15] Seeding

0.5% 587ms 578ms 154ms
1% 182ms 250ms 71ms
2% 58ms 125ms 39ms
5% 28ms 46ms 21ms

Table 1: Comparison of running time including initialization. For the
examined case, our algorithm is faster by a factor of 2-3.

4.2 Non-Planar Domains
Fig. 8 combines a color-coded visualization of pressure with our
streamline seeding result and extracted critical points of the wall
shear stress. Both fields resulted from CFD simulation of blood
flow in a reconstructed aneurysm. The streamlines exhibit the same
degree of continuity, uniformity and coverage as the planar exam-
ples. Overall flow behavior as well as local topological details are
well observable. The structure of the pressure field is still well per-
ceptible due to the sparsity of the streamlines.

We applied our method in Fig. 9 for the validation of a CFD
solution with experimental data. A transparent silicon model of
a cerebral aneurysm was used for the experimental flow, particle
traces of the near-wall-flow were recorded in a gray-scale image
with the wall PIV technique by Kertzscher et al. [6]. The same
geometry and flow condition was used for the CFD computation.
The PIV image and streamlines of the wall shear stress of the CFD
solution are superimposed. Due to the sparsity of the streamline
visualization, similarities and differences of the two flow fields are
well observable.

Another visualization of wall shear stress resulting from CFD
simulation on a curved surface is shown in Fig. 10. Flow separation
can be observed at the back side of the propeller blades. Although
the field barely possesses topological features as starting points, the
resulting streamline image still exhibits complete coverage and a
great degree of uniformity and continuity.

4.3 Timings and Scalability
Timings were measured on a standard AMD64 3GHz computer.
We implemented our method for triangulated surfaces. Streamlines
are traced triangle-wise locally exact by the method of Kipfer et
al. [7], keeping track of the position and arc-length to the seed for
each sample. Streamline segments are linked to the triangles as
index structure for fast intersection tests. For more implementation
details, see [17]. Table 1 compares running times of our method
to [15] and [21]. The three techniques were applied to the vector
field depicted in Fig. 5, which consists of 50x50 data vectors. Our
algorithm is faster than the methods proposed in [15] and [21] by a
factor of 2-3. It further exhibits a significantly slower growth than
the other two approaches, as Fig. 11 illustrates.

5 DISCUSSION

Our algorithm combines the advantages of the approaches of
Mebarki et al. [15] and Verma et al. [21] to achieve high quality
seed placement according to the mentioned quality criteria, improve
on the running time of comparable approaches and depart from the
restriction to planar domains.

Analogous to [15], we use a greedy strategy to find the biggest
remaining void and place a seed in its center. This favors long
streamlines, satisfying the continuity criterion. Contrary to [15],
our search space for seed placement is 1-dimensional, increasing
efficiency, especially for curved surface domains. Furthermore,
streamline distance measurement is induced by the respective dual
streamline set, and is thus iteratively refined. This particularly im-
pacts streamline termination, allowing early streamlines to gather,
which they usually do at critical points, while streamlines added

Figure 11: Running times in relation to streamline density, which is
the inverse of the separation distance. Dual Seeding exhibits a more
moderate growth than the methods proposed in [15] and [21].

(a) Mebarki at al. (b) Dual Seeding

Figure 12: Comparison at low streamline density. Our streamline
termination algorithm is less strict, allowing streamlines to gather at
critical points, which improves their perceptibility.

later on are terminated at farther distances. In effect, critical points
are more accentuated at low streamline density, as Fig. 12 demon-
strates. This accentuation also improves the perceptibility of criti-
cal points compared to the results of Jobard/Lefer and Turk/Banks
in Fig. 5. Thereby, our algorithm prioritizes feature coverage over
uniformity. Apart from this desirable deviation of density, some
undesirable clutter that does not provide additional information re-
mains, as can be observed in Fig. 6 (left). Since streamlines can
only be terminated at intersection points, where inter-streamline
distance is again approximated, clutter is significantly reduced but
not fully eliminated.

By construction, our seed locations on the dual streamlines have
similarities to the seeding templates of Verma et al. shown in
Fig. 13. The seeding templates run orthogonal to idealized (lin-
ear) flow fields in the vicinity of the critical points, and are con-
structed explicitly for every critical point of the vector field. Due to
our topology based initialization and subsequent refinement, seed-
ing on the dual streamlines results in the same emphasis of critical
points without the assumption of idealized flow patterns.

Since the two streamline sets mutually control their densities, it

Figure 13: Seeding templates proposed by Verma et al.



is important to initialize D first. During the initialization of D, P is
empty, and thus the streamline termination criterion never applies,
resulting in very long lines that may clutter in the vicinity of critical
points or loop, as can be seen in Fig. 1 and Fig. 3. Yet, loops in pri-
mal streamlines are detected, as they would intersect the same dual
streamline twice. This initialization order ensures that the stream-
line result is free of narrow spirals that are perceived as distracting
clutter.

As presented in the performance comparisons in Tab. 1 and
Fig. 11, our algorithm is very efficient and has a moderate growth
rate with respect to the streamline density. Efficiency of intersection
detection and handling is crucial for our algorithm. We achieved
good performance by attaching an index structure to the surface to
facilitate intersection detection. The spatial resolution of the index
structure can be assessed by the streamline density parameter δ .
This way, the search space for streamline intersections is restriced
to a local neighborhood, even for dense seedings.

Our method is especially tailored for seeding on arbitrarily
shaped curved 2D surfaces and cannot directly be extended to a
3D seeding technique. We rely on the symmetry of the streamline
duality. In 2D, the dual (or orthogonal) structure of a line is again
a line and we can apply the same method for the addition of subse-
quent new streamlines. In 3D, the dual structure of a 1D streamline
is a 2D surface; the symmetry of our method would be lost. Apart
from the structural difference, it is not desirable to seed streamlines
in 3D with the same objectives as in 2D, as mutual occlusion is the
main problem to solve in 3D.

6 CONCLUSION AND FUTURE WORK

We have presented a novel seeding technique especially useful
for tangent vector fields on curved surface domains. Unlike
other approaches, our method is not based on Euclidean distance,
Delaunay-triangulation, Voronoi-decomposition, or other concepts,
which are hard to apply efficiently on curved surfaces.

Besides means of streamline tracing, only simple algorithmic
concepts are used, which makes our method easy to implement.
Still, it is highly efficient, comparable in placement quality and su-
perior in processing time to state-of-the-art methods.

The main contribution of this work resides in the introduction of
dual streamlines. By analyzing and selectively refining the resulting
net of orthogonal streamlines we explore the domain and control
streamline density efficiently.

This approach yields a new measurement for density distribu-
tion, i.e. long continuous streamline segments indicate cavities in
the dual field. It could be to use that measurement as a basis to ap-
ply optimization approaches, such as the one employed by Turk and
Banks, instead of complying to the greedy paradigm. This could
improve overall uniformity at the cost of simplicity and efficiency.
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