Models for Railway Track Allocation

Thomas Schlechte
Joint work with
Ralf Borndörfer Martin Grötschel

16.11.2007
ATMOS 2007 Sevilla
Overview

1. Problem Introduction
2. Model Discussion
3. Column Generation Approach
4. Computational Results
Planning in Public Transport

- Tracks
- Lines/Freq.
- Timetables
- Vehicles
- Crews

- Strategic Stage
 - Stops
 - Cycles

- Tactical Stage
 - Connections

- Operational Stage
 - Rotations
 - Duties
Traffic Projects @ ZIB

- VS-OPT
- DS-OPT
- IS-OPT
- TS-OPT
- MCF
- Telebus
- VS: BVG
- DS: BVG
- Line+Price Planning
- CS-OPT

Years:
- 92-94
- 94-97
- 97-00
- 00-03
- 03-07

Institutes:
- bmb+f
- BVG
- DFG
- Berlin
- ZIB
Planning in Public Transport

- Strategic Stage
 - B1 – B15
- Tactical Stage
 - TS-OPT
- Operational Stage
 - VS-OPT
 - B1 – B15
 - DS-OPT
 - IS-OPT
 - CS-OPT

- Tracks
- Lines/Freq.
- Timetables
- Vehicles
- Crews

- Strategic Stage
 - Stops
- Tactical Stage
 - Cycles
- Operational Stage
 - Connections
 - Rotations
 - Duties

- Planning in Public Transport

- CS-OPT
- VS-OPT
- DS-OPT
- B1 – B15
- IS-OPT
- TS-OPT
Overview

1. Problem Introduction
2. Model Discussion
3. Column Generation Approach
4. Computational Results
The Problem (TraVis by M.Kinder)
Schedule in 3d
Conflict-Free-Allocation
Railway Timetabling – State of the Art

- Charnes and Miller (1956), Szpiegal (1973), Jovanovic and Harker (1991),
- **Caprara, Fischetti and Toth (2002)**, Peeters (2003)
- Semet and Schoenauer (2005),
- **Caprara, Monaci, Toth and Guida (2005)**
- Kroon, Dekker and Vromans (2005),
- Vansteenwegen and Van Oudheusden (2006),
- Caprara, Kroon, Monaci, Peeters, Toth (2006)

non-cyclic timetabling literature
Complexity

Proposition [Caprara, Fischetti, Toth (02)]: OPTRA/TTP is *NP*-hard.

Proof:
Reduction from Independent-Set.
Track Allocation Problem

Train Requests → Scheduling Digraph → Timetable
Overview

1. Problem Introduction
2. Model Discussion
3. Column Generation Approach
4. Computational Results
Packing Models

- Conflict graph
- Cliques
- Perfect

Cacchiani (2007) – Path Compatibility Graphs
Arc Packing Problem

\[(APP)\]

\[\begin{align*}
\text{max} & \quad \sum_{i \in \mathcal{I}} \sum_{a \in \mathcal{A}} p_a^i x_a^i \\
\text{s.t.} & \quad \sum_{a \in \delta_i^{\text{out}}(v)} x_a^i - \sum_{a \in \delta_i^{\text{in}}(v)} x_a^i \leq \delta_i(v) \quad \forall v \in V, \forall i \in \mathcal{I} \quad (i) \\
& \quad \sum_{i \in \mathcal{I}} \sum_{a \in \mathcal{A}} x_a^i \leq 1 \quad \forall c \in \mathcal{C} \quad (ii) \\
& \quad x_a^i \in \{0, 1\} \quad \forall a \in \mathcal{A}, \forall i \in \mathcal{I} \quad (iii)
\end{align*}\]

Variables
- Arc occupancy (request i uses arc a)

Constraints
- Flow conservation and
- Arc conflicts (pairwise)

Objective
- Maximize proceedings

(PPP) transformation from arc to path variables (see Cachhiani (2007))
Packing Models

- **Proposition:** The LP-relaxation of APP can be solved in polynomial time.
- ... and in practice.
Novel Model

- Track Digraph
- Timeline(s)
- Config paths

Artificial arcs represent valid successors!
Path Coupling Problem

\[(PCP)\]
\[\max \quad \sum_{p \in \mathcal{P}} \sum_{a \in p} p_a^i x_p\]
\[\text{s.t.} \quad \sum_{p \in \mathcal{P}_i} x_p \leq 1 \quad \forall i \in I \quad (i)\]
\[\quad \sum_{q \in \mathcal{Q}_j} y_q \leq 1 \quad \forall j \in J \quad (ii)\]
\[\quad \sum_{a \in p \in \mathcal{P}} x_p - \sum_{a \in q \in \mathcal{Q}} y_q \leq 0 \quad \forall a \in \mathcal{A}_I \cap \mathcal{A}_J \quad (iii)\]
\[\quad y_q \in \{0, 1\} \quad \forall q \in \mathcal{Q}_j, \forall j \in J \quad (iv)\]
\[\quad x_p \in \{0, 1\} \quad \forall p \in \mathcal{P}_i, \forall i \in I \quad (v)\]

Variables
- Path und config usage (request i uses path p, track j uses config q)

Constraints
- Path and config choice
- Path-config-coupling (track capacity)

Objective Function
- Maximize proceedings

(ACP) transformation from path to arc variables (see Borndörfer, S. (2007))
Linear Relaxation of PCP

\[(MLP)\]
\[
\max \sum_{p \in \mathcal{P}} \sum_{a \in p} p_a^i x_p
\]
\[\text{s.t.} \quad \sum_{p \in \mathcal{P}_i} x_p \leq 1 \quad \forall i \in I \quad (i)\]
\[\sum_{q \in \mathcal{Q}_j} y_q \leq 1 \quad \forall j \in J \quad (ii)\]
\[\sum_{a \in \mathcal{P}} x_p - \sum_{a \in \mathcal{Q}} y_q \leq 0 \quad \forall a \in A_I \cup A_J \quad (iii)\]
\[0 \leq y_q \leq 1 \quad \forall q \in \mathcal{Q} \quad (iii)\]
\[0 \leq x_p \leq 1 \quad \forall p \in \mathcal{P} \quad (iv)\]

<table>
<thead>
<tr>
<th>dual variable</th>
<th>information about</th>
<th>useful to</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\gamma_i)</td>
<td>bundle price</td>
<td>analyse request</td>
</tr>
<tr>
<td>(\pi_j)</td>
<td>track price</td>
<td>analyse network</td>
</tr>
<tr>
<td>(\lambda_a)</td>
<td>arc price</td>
<td>-</td>
</tr>
</tbody>
</table>
Dualization

\[(DLP) \]
\[
\begin{align*}
\text{min} & \quad \sum_{j \in J} \pi_j + \sum_{i \in I} \gamma_i \\
\text{s.t.} & \quad \gamma_i + \sum_{a \in p} \lambda_a \geq \sum_{a \in p} p^i_a \quad \forall p \in \mathcal{P}_i, \forall i \in I \quad (i) \\
& \quad \pi_j - \sum_{a \in q} \lambda_a \geq 0 \quad \forall q \in \mathcal{Q}_j, \forall j \in J \quad (ii) \\
& \quad \gamma_i \geq 0 \quad \forall i \in I \quad (iii) \\
& \quad \lambda_a \geq 0 \quad \forall a \in A_{I \cup J} \quad (iv) \\
& \quad \pi_j \geq 0 \quad \forall j \in J \quad (v)
\end{align*}
\]
Pricing of x-variables

\[(\text{PRICE}(x)) \exists p \in P_i: \gamma_i < \sum_{a \in p} (p_a - \lambda_a)\]

\[c_a = -p_a + \lambda_a\]

Pricing Problem(x):
Acyclic shortest path problems for each slot request i with modified cost function c!
Pricing of y-variables

(PRICING (y)) \(\exists q \in Q_j : \pi_j < \sum_{a \in q} \lambda_a \)

\[c_a = -\lambda_a \]

Pricing Problem (y):
Acyclic shortest path problem for each track j with modified cost function c!
Observation

\[(\text{PRICE } (x)) \quad \exists \overline{p} \in \mathcal{P}_i : \quad \gamma_i < \sum_{a \in \overline{p}} (p_a - \lambda_a)\]

\[\eta_i := \max_{p \in \mathcal{P}_i} \sum_{a \in p} (p_a - \lambda_a) - \gamma_i, \quad \forall i \in I\]

\[\eta_i + \gamma_i \geq \sum_{a \in p} (p_a - \lambda_a) \quad \forall i \in I, p \in \mathcal{P}_i\]

\[\eta_i + \gamma_i \text{ satisfies } (DLP)(i)\]
And analogously ...

(PRICE (y)) \(\exists \overline{q} \in Q_j : \pi_j < \sum_{a \in \overline{q}} \lambda_a \)

\(\theta_j := \max_{\overline{q} \in Q_j} \sum_{a \in \overline{q}} \lambda_a - \pi_j, \forall j \in J \)

\(\theta_j + \pi_j \geq \sum_{a \in q} \lambda_a \forall j \in J, q \in Q_j \)

\(\theta_j + \pi_j \) satisfies \((DLP)(ii)\)
Pricing Upper Bound

\[(\max\{\eta+\gamma, 0\}, \max\{\theta+\pi, 0\}, \lambda) \text{ is feasible for (DLP)}\]

\[\beta(\gamma, \pi, \lambda) := \sum_{i \in I} \max\{\gamma_i + \eta_i, 0\} + \sum_{j \in J} \max\{\pi_j + \theta_j, 0\}\]

- **Lemma [ZR-07-02]**: Given (infeasible) dual variables of PCP and let \(v_{LP}(PCP)\) be the optimum objective value of the LP-Relaxtion of PCP, then:

\[v_{LP}(PCP) \leq \beta(\gamma, \pi, \lambda)\]
Model Comparison

- **Theorem [ZR-07-02]:** The LP-relaxations of ACP and PCP can be solved in polynomial time.

- **Lemma [ZR-07-02]:**
 \[
 v_{LP}(PCP) = v_{LP}(ACP) = v_{LP}(APP) = v_{LP}(PPP)
 \leq v_{LP}(APP')
 \]
Overview

1. Problem Introduction
2. Model Discussion
3. Column Generation Approach
4. Computational Results
Two Step Approach

TS-OPT

1. LP Solving

2. IP Solving

Duals by Bundle Method

Column Generation

Pricing by Dijkstra’s Shortest Path

Rapid Branching Heuristic
Branch-Bound-Price

or Dive-Generate

Evaluation of only few highly different sub-problems at iteration j to reach IP-Solutions fast.
Rapid Branching

Node selection of set of fixed to 1 variables by using perturbated cost function (bonus close to 1.0).

- Update Upper Bound
- Column Generation
- Go on if target was reached, otherwise pseudo-backtrack.
Overview

1. Problem Introduction
2. Model Discussion
3. Column Generation Approach
4. Computational Results
Results

- **Test Network**
 - 45 Tracks
 - 37 Stations
 - 6 Traintypes
 - 10 Trainsets
 - 146 Nodes
 - 1480 Arcs
 - 96 Station Capacities
 - 4320 Headway Times
Model Comparison

- **Test Scenarios**
 - 146 Train Requests
 - 285 Train Requests
 - 570 Train Requests

- **Flexibility**
 - 0-30 Minutes
 - earlier departure penalties
 - late arrival penalties
 - train type depending profits
Run of TS-OPT / LP Stage

scenario 570 trains

objective value

column generation iterations

$\beta(\gamma, \pi, \lambda)$

$\nu(\text{RPLP})$
Model Comparison

The graph shows the comparison of different model scenarios for flexibility τ. The x-axis represents the flexibility τ, while the y-axis shows the objective value. Various models are compared, indicated by different line styles and colors:
- $v_{LP}(APP')$
- $v_{IP}(APP')$
- $v_{LP}(ACP)$
- $v_{IP}(ACP)$
- $v_{LP}(PCP)$
- $v_{IP}(PCP)$

Scenarios 146 are plotted, with the objective value ranging from 8.2×10^4 to 9.6×10^4. The graph illustrates how each model performs under varying levels of flexibility.
Model Comparison

For details see [ZR-07-02, ZR-07-20].
Outlook

Algorithmic Developments

- Bundle method
- Model refinement (connections)
- Adaptive IP Heuristics
- Dynamic Discretization

Simulation of results by

Railsys®
Thank you for your attention!

Thomas Schlechte
Zuse-Institut Berlin (ZIB)
Takustr. 7, 14195 Berlin
Deutschland

Fon (+49 30) 84185-317
Fax (+49 30) 84185-269
schlechte@zib.de
www.zib.de/schlechte