Solving Railway Track Allocation Problems

By Column Generation

Thomas Schlechte
Joint work with
Ralf Borndörfer
Martin Grötschel

05.09.2007
SOR 2007 Saarbrücken

Federal Ministry of Economics and Technology

Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)

schlechte@zib.de http://www.zib.de/schlechte
Overview

1. Problem Introduction
2. Model Discussion
3. Column Generation Approach
4. Computational Results
Overview

1. Problem Introduction
2. Model Discussion
3. Column Generation Approach
4. Computational Results
Planning in Public Transport

Strategic Stage
- Tracks
- Lines/Freq.
- Stops

Tactical Stage
- Timetables
- Cycles
- Connections

Operational Stage
- Vehicles
- Crews
- Rotations
- Duties
Traffic Projects @ ZIB

- BS-OPT
- VS-OPT
- DS-OPT
- VS: BVG
- IS-OPT
- DS: BVG
- Line+Price Planning
- TS-OPT
- MCF
- Telebus
- CS-OPT

Years:
- 92-94
- 94-97
- 97-00
- 00-03
- 03-07
The Problem (TraVis by M.Kinder)
Schedule in 3d
Conflict-Free-Allocation
State-of-the-Art

- Charnes and Miller (1956), Szpigel (1973), Jovanovic and Harker (1991),
- Semet and Schoenauer (2005),
- Caprara, Monaci, Toth and Guida (2005)
- Kroon, Dekker and Vromans (2005),
- Vansteenwegen and Van Oudheusden (2006),
- Caprara, Kroon, Monaci, Peeters, Toth (2006)
- and many more
Proposition [Caprara, Fischetti, Toth (02)]:
OPTRA/TTP is \textit{NP}-hard.

Proof:
Reduction from Independent-Set.
Track Allocation Problem

Train Requests → Scheduling Digraph → Timetable
Overview

1. Problem Introduction
2. Model Discussion
3. Column Generation Approach
4. Computational Results
Packing Models

- Conflict graph
- Cliques
- Perfect

Berlin Saarbrücken
Arc Packing Problem

\[(APP)\]
\[
\max \sum_{i \in I} \sum_{a \in A} p^{i}_a x^{i}_a \\
\text{s.t. } \sum_{a \in \delta^{\text{out}}_i(v)} x^{i}_a - \sum_{a \in \delta^{\text{in}}_i(v)} x^{i}_a \leq \delta_i(v) \quad \forall v \in V, \forall i \in I \quad (i) \\
\sum_{i \in I} \sum_{a \in A} x^{i}_a \leq 1 \quad \forall c \in C \quad (ii) \\
x^{i}_a \in \{0, 1\} \quad \forall a \in A, \forall i \in I \quad (iii)
\]

Variables
- Arc occupancy (request i uses arc a)

Constraints
- Flow conservation and
- Arc conflicts (pairwise)

Objective
- Maximize proceedings
Packing Models

- **Proposition:**
 The LP-relaxation of APP can be solved in polynomial time.
- ... and in practice.
Novel Model

- Track Graph
- Timeline(s)
- Config paths
Path Coupling Problem

\[(PCP)\]

\[
\begin{align*}
\text{max} & \quad \sum_{p \in P} \sum_{a \in p} p_a^i x_p \\
\text{s.t.} & \quad \sum_{p \in P_i} x_p \leq 1 & \forall i \in I \\
& \quad \sum_{q \in Q_j} y_q \leq 1 & \forall j \in J \\
& \quad \sum_{a \in p \in P} x_p - \sum_{a \in q \in Q} y_q \leq 0 & \forall a \in A_I \cap A_J \\
& \quad y_q \in \{0, 1\} & \forall q \in Q_j, \forall j \in J \\
& \quad x_p \in \{0, 1\} & \forall p \in P_i, \forall i \in I
\end{align*}
\]

Variables
- Path and config usage (request i uses path p, track j uses config q)

Constraints
- Path and config choice
- Path-config-coupling (track capacity)

Objective Function
- Maximize proceedings
Linear Relaxation of PCP

\[(MLP)\]

\[
\begin{align*}
\max & \sum_{p \in \mathcal{P}} \sum_{a \in \mathcal{P}_i} p_a x_p \\
\text{s.t.} & \sum_{p \in \mathcal{P}_i} x_p \leq 1 \quad \forall i \in I \quad (i) \\
& \sum_{q \in \mathcal{Q}_j} y_q \leq 1 \quad \forall j \in J \quad (ii) \\
& \sum_{a \in \mathcal{P}} x_p - \sum_{a \in \mathcal{Q}} y_q \leq 0 \quad \forall a \in A_I \cup A_J \quad (iii) \\
& 0 \leq y_q \leq 1 \quad \forall q \in \mathcal{Q} \quad (iv) \\
& 0 \leq x_p \leq 1 \quad \forall p \in \mathcal{P}
\end{align*}
\]

<table>
<thead>
<tr>
<th>Dual Variable</th>
<th>Information About</th>
<th>Useful To</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\gamma_i)</td>
<td>bundle price</td>
<td>analyse request</td>
</tr>
<tr>
<td>(\pi_j)</td>
<td>track price</td>
<td>analyse network</td>
</tr>
<tr>
<td>(\lambda_a)</td>
<td>arc price</td>
<td>-</td>
</tr>
</tbody>
</table>
(DLP)
\[
\begin{align*}
\min & \quad \sum_{j \in J} \pi_j + \sum_{i \in I} \gamma_i \\
\text{s.t.} & \quad \gamma_i + \sum_{a \in p} \lambda_a \geq \sum_{a \in p} p_a^i \quad \forall p \in \mathcal{P}_i, \forall i \in I \quad (i) \\
& \quad \pi_j - \sum_{a \in q} \lambda_a \geq 0 \quad \forall q \in \mathcal{Q}_j, \forall j \in J \quad (ii) \\
& \quad \gamma_i \geq 0 \quad \forall i \in I \quad (iii) \\
& \quad \lambda_a \geq 0 \quad \forall a \in A_I \cup A_J \quad (iv) \\
& \quad \pi_j \geq 0 \quad \forall j \in J \quad (v)
\end{align*}
\]
Pricing of x-variables

\[(\text{PRICE}(x)) \ \exists \bar{p} \in \mathcal{P}_i : \ \gamma_i < \sum_{a \in \bar{p}} (p_a - \lambda_a)\]

\[c_a = -p_a + \lambda_a\]

Pricing Problem(x): Acyclic shortest path problems for each slot request i with modified cost function c.
Pricing of y-variables

(PRICING \(y\)) \(\exists \bar{q} \in Q_j : \pi_j < \sum_{a \in \bar{q}} \lambda_a\)

\[c_a = -\lambda_a \]

Pricing Problem\((y)\):
Acyclic shortest path problem for each track \(j\) with modified cost function \(c\)!
Observation

\[(\text{PRICE (x)}) \exists \overline{p} \in \mathcal{P}_i : \gamma_i < \sum_{a \in \overline{p}} (p_a - \lambda_a)\]

\[\eta_i := \max_{p \in \mathcal{P}_i} \sum_{a \in p} (p_a - \lambda_a) - \gamma_i, \ \forall i \in I\]

\[\eta_i + \gamma_i \geq \sum_{a \in p} (p_a - \lambda_a) \ \forall i \in I, p \in \mathcal{P}_i\]
And analogously ...

(PRICE (y)) \[\exists \overline{q} \in Q_j : \pi_j < \sum_{a \in \overline{q}} \lambda_a \]

\[\theta_j := \max_{\overline{q} \in Q_j} \left(\sum_{a \in \overline{q}} \lambda_a - \pi_j \right), \forall j \in J \]

\[\theta_j + \pi_j \geq \sum_{a \in \overline{q}} \lambda_a \forall j \in J, q \in Q_j \]
Pricing Upper Bound

\[(\max\{\eta + \gamma, 0\}, \max\{\theta + \pi, 0\}, \lambda)\] is feasible for \((DLP)\)

\[\beta(\gamma, \pi, \lambda) := \sum_{i \in I} \max\{\gamma_i + \eta_i, 0\} + \sum_{j \in J} \max\{\pi_j + \theta_j, 0\}\]

- **Lemma [ZR-07-02]**: Given (infeasible) dual variables of PCP and let \(v_{LP}(PCP)\) be the optimum objective value of the LP-Relaxtion of PCP, then:

\[v_{LP}(PCP) \leq \beta(\gamma, \pi, \lambda)\]
Model Comparison

- **Theorem [ZR-07-02]:** The LP-relaxations of ACP and PCP can be solved in polynomial time.

- **Lemma [ZR-07-02]:**

 \[v_{LP}(PCP) = v_{LP}(ACP) = v_{LP}(APP) = v_{LP}(PPP) \leq v_{LP}(APP') \]
Overview

1. Problem Introduction
2. Model Discussion
3. Column Generation Approach
4. Computational Results
Two Step Approach

TS-OPT

1. LP Solving
2. IP Solving

Duals by Bundle Method

Column Generation

Pricing by Dijkstra’s Shortest Path

Rapid Branching Heuristic
Branch-Bound-Price

or Dive-Generate

Evaluation of only few highly different sub-problems at iteration j to reach IP-Solutions fast.
Rapid Branching

Node selection of set of fixed to 1 variables by using perturbated cost function (bonus close to 1.0).

\[S_j \]

Go on if target was reached, otherwise pseudo-backtrack.

\[S_{j+1}^0 \]

\[S_j^l \]

Update Upper Bound

Column Generation
Overview

1. Problem Introduction
2. Model Discussion
3. Column Generation Approach
4. Computational Results
Results

• Test Network

• 45 Tracks
• 37 Stations
• 6 Traintypes
• 10 Trainsets
• 146 Nodes
• 1480 Arcs
• 96 Station Capacities
• 4320 Headway Times
Model Comparison

- **Test Scenarios**
 - 146 Train Requests
 - 285 Train Requests
 - 570 Train Requests

- **Flexibility**
 - 0-30 Minutes
 - earlier departure penalties
 - late arrival penalties
 - train type depending profits
Run of TS-OPT
Model Comparison

![Graph showing model comparison with various lines representing different models and scenarios. The x-axis represents flexibility τ, and the y-axis shows the objective value. Different models are labeled with notations such as $v_{\text{LP}}(\text{ACP})$ and $v_{\text{IP}}(\text{PCP})$. There are 146 scenarios depicted in the graph.]
Model Comparison

For details see [ZR-07-02, ZR-07-20].
Outlook

Algorithmic Developments

- Bundle method
- Model refinement (connections)
- Adaptive IP Heuristics
- Dynamic Discretization

Simulation of results by Railsys®
Thank you for your attention!

Thomas Schlechte
Zuse-Institut Berlin (ZIB)
Takustr. 7, 14195 Berlin
Deutschland

Fon (+49 30) 84185-317
Fax (+49 30) 84185-269
schlechte@zib.de
www.zib.de/schlechte