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Machine Learning

* Field of study that gives computers the ability to learn without
being explicitly programmed

— Arthur Samuel, 1959 / Wiki definition

Generative Metric Learning Clustering

Discriminative



Why ML for |IA?

* |A: Infer information from
visual data
— Segmentation
— Registration
— Recognition
— Image Guided Therapy ...

e Large variations and
complexity
— No analytical solution

* Resortto ML
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|A problems that can benefit from ML

NP-Hard (ex: scene matching)

lll-defined (ex: 3D reconstruction from a single
image)

Right answer is subjective (ex: segmentation)
Hard to model (ex: scene classification)

ML uses statistical reasoning to find approximate
solutions for tackling the above difficulties.



Formulating and Evaluating IA
problems as ML

* Topic of Day 3

— Read 4 sample papers (Medical Image Analysis +
Computer Vision)

— Critically analyze the contributions

— It’s not about blind accuracy plot w.r.t. different
off-the-shelf methods ... there are many more
nuances

* List of papers: www.zib.de/MLIA



http://www.zib.de/MLIA

Image Analysis Perspective

* Given visual data x, infer world state y
— Discrete -> Classification
— Continuous -> Regression



Image Analysis Perspective

* Given visual data x, infer world state y
— Discrete -> Classification
— Continuous -> Regression

 Components of the solution
— Model
— Learning Algorithm
— Inference Algorithm
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Components of the solution
(Contd.)

* Model: Mathematically relate visual data x
with world state y

* Learning Algo: Fit parameters O using paired
training examples (x,,y;)

* |Inference Algo: Take a new observation x and
use learnt model to predict world state y



Types of Model

_ Generative Discriminative

Local Max. Likelihood Empirical Risk
Minimization

Local+Prior MAP Support Vector
Machines

Model Averaging Bayesian Maximum Entropy

Discrimination




Choosing one over the other

e No Definitive Answer.
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Choosing one over the other

e No Definitive Answer.

 Some considerations:
— Inference is generally simpler with discriminative

— Image data are generally much higher dimensional
than world state — modeling is costly

— If wishing to build information about the data
generation process — generative

— If missing data in training/ testing — generative
— Expert knowledge incorporation as prior - generative



Empirical Risk Minimization

Quantification: Performance is Quantified by a loss function

Most Importantly: Generalize to unseen data — this is where optimization
in ML is different from any other field

|Idea: Avoid over-fitting by penalizing complex models



Empirical Risk Minimization

Quantification: Performance is Quantified by a loss function

Most Importantly: Generalize to unseen data — this is where optimization
in ML is different from any other field

|Idea: Avoid over-fitting by penalizing complex models

Training Data: {x1,x2,....Xm}

Training Labels: {y1.y2..... ym}
Learn a vector: w

1
' ' ' A - , ,;- J"..
minimize [Aw(w)|+ mz (xi, yi, w)

w

Regularizer Risk



ML directions

* Engineering part: Choose a loss and a
regularizer based on your problem and go on..

* Optimization Part: If EMP can be turned into a
convex problem...u can manage lots of things

* Our Focus: Intuition rather than rigor



Convex Function

f(x’)

f(x)

e A function fis convex if and only if, for all x, x’
and )\ € (0,1)

F(Ax + (1 = A)x") < M (x) + (1= N)F(X)



Essential Convex Functions

Negative Entropy: f(x) = xlogx + (1 — x)log(1 — x)
Un-normalize Negative Entropy: f(x,y) = xlogx + ylogy — x — y
Hinge Loss: f(x) = max(0,1-x)
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Convex set

* Set Cis convex if and only X
if

M+ (1-=XMx"eC

e If a function is convey, all
its level sets are convex

Function is convex if and only if
epigraph is a convex set



Level Set Example




Level Set Example

BUT the converse is not true (quasi-convex)



Essential operations that preserve
convexity
* Set Operations

— Intersection of Convex Sets
— Image of Convex Set under Linear Transf.

— Inv. Image of Convex Set under Linear Transf.



Essential operations that preserve
convexity

* Set Operations
— Intersection of Convex Sets
— Image of Convex Set under Linear Transf.
— Inv. Image of Convex Set under Linear Transf.

* Function Operations
— Linear Combination with non-negative weights
— Point wise Maximum
— Projection along a direction
— Composition with affine function




First Order Properties

* First order Taylor Approx. Globally lower
bounds a function

f(x) > f(xX")+ < x—=x",VFf(x) >

Where ever u go, the
line will never
intersect the function
anywhere else apart
from the red point



Bregman Divergence

Ne(x,x") =f(x) — f(xX')— < x—x",VFf(x") >

As given by the )1 < x— X V() >
function, how far
away is x from x’ f(x")

Bcoz 15t order Taylor
Expansion is global
lower bound, f(x) is
larger than the other

e 2 Popular flavors
— Euclidean Distance Squared
— Unnormalized Relative Entropy



ldentifying the Minima

Given a smooth (differentiable) convex function f

Vi(x)=20

e What if function is non-smooth?
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ldentifying the Minima

Given a smooth (differentiable) convex function f

Vi(x)=0

e What if function is non-smooth?

Remarkable property: A convex function is at least sub-differentiable everywhere

Even in non-differentiable places, subgradient
will always exist

You can always draw at least one tangent line Multiple

Tangents
at kinks




Solving linear SVM




Solving linear SVM

 Maximally non-
committal hyperplane




Solving linear SVM

 Maximally non-
committal hyperplane

< W, X — Xp >= 2

{x| <w.,x >+b=+1}

{x| < w,x > +b=0}
{x| <w,x >+4+b=—-1}



Optimization Problem

2
maximize s. t. yi(< w,x; > +b) >1.Vi

wb||w]

Or

1
m|n|n;|ze W[ s. t. yi(<w,x; > +b)>1Vi
W



More general ML problem

* Data is not exactly linearly separable
* |Introduce slack variable

1
mmlgnglze W[ s t. yi(<w,x;>+b)>1—¢.& >0,Vi



Slack Issues

* No control over slack variable, being & >0

e Can go to infinity and find some useless
solution



Slack Issues

* No control over slack variable, being ¢, >0
e Can go to infinity and find some useless
solution

e Standard Solution: Penalize slack variables
— Ensures nice classification for most of the points
— Ready to pay the price for hopeless ones

2
mmltl;nglze HWH + E £ s vi(<w,x; >+b) >1-¢&.,& >0,V



Slack Issue Contd.

A ] — _
migﬁgﬁgzeg\WV*;;& s. t. yi(<w,x; > +b) >1-¢,§ >0,V



Slack Issue Contd.

m|n|rn£|ze—\w\2+ Zf, s. t. yi(<w,x;>4b)>1-£,& >0,V
Or

m|n|m£|ze—\vv2+ Zf, s.t. &> 1-yi(<w,xi>+b),& >0,V



By standard optim. trick

A 1 «
minimize—HWH2+—Z§; s.t. 2 1-yi(<w,x;>+b),& >0,V
m

w,b& 2 —

A 1 «
minvi’l‘.'ri';nizeEHWH2 + po Zl max(0,1 — y;(< w, x; > +b))



By standard optim. trick

) 1 «
minimize— HWH2+ Zf, s. t. &> 1—yi(<w,xi > +b).& >0,V

Wb le

(0,1 — b
mmlrrglze HWH + — gmax yi(< w, x; > +b))

* Minimize squared Norm (want to have small w
vectors)

* Hinge Loss (Risk Minimizer)



Loss Choices

U
minimize

1 m
im EHW\F +|= Y max(0.1 - y;(< w.x; > +b))

=1

Regularizer Risk

* Binary Loss
— If correct, Nothing
— If misclassification, unit loss

* Butitis a nasty non-convex one, so
take a convex upper bound e.g.

Hinge Loss

© Wikipedia



Remember: First Order Properties

* First order Taylor Approx. Globally lower
bounds a function

f(x) > f(xX")+ < x—=x",VFf(x) >

Where ever u go, the
line will never

intersect the function
anywhere else apart
from the red point

Lower bound is piecewise
linear — can use any LP
solver to get some optimum




Cutting Plane method

* |dea: Localize your function

* Given:
— black box which can calculate function value and
gradient at any given point
— Lower bound of the function (usually O for Regul.
Risk Minimization)
* Remember: First order Taylor expansion
globally lower bounds the function



Cutting Plane Method Visual

* Function resides in shaded area

* Refinement: Every time, we take a chunk out
of the shaded by taking Taylor expansion

Check out the Board



More on Cutting Plane (CP)

* CP methods work by forming piecewise linear
lower bound
J(w) > JtCP(W) = maxi<j<i{J(wi_1)+ < w—wj_1,VI(wi_1) >}
* At each iteration t, set w, ., is augmented by

w, = argminJ&F (w)

w

e Stop when gap

€t = ngigtJ(Wf) — I (we)



What if non-smooth function

e Cutting plane really does
great in these situations,

because it works on
subgradients
* Choose any arbitrary

subgradient and it will work.



Bundle Methods

 Stabilized Cutting Plane method (Always in
practice)

* Add a regularizer to handle overfitting

— Proximal: w; = argmin{i—tw — W1 |]? + I (W)}
w
. : CP 1 A 2
— Trust region: w: = argmin{Jy"(w) s. t. S|jw —We1f[” < Ke}

| R
— Level Set: w; = argmm{EHW — Wt_le s. t. JtCP(W) < Tt}
w

Quadratic in the gap calculation ensures convexity and unique minima
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Cutting Plane Method Visual

* Function resides in
checkerboard area

* Every time, we take a
chunk out of the
checkerboard by taking
Taylor expansion




Turn Cutting Plane into Optimization

e Given: Green function and a
second function that lies
below green function

* |dea:

— Minima of second function will
always lie below blue function

— Red points are always above
true minima

— Gap tells how far away u r from
the optimum

e Solution: Optimize the gap to
solve the problem

!i!



Understanding Bounds

Upper Bound Whatever
constant No. of steps
u choose the optim.
needs for €
. dcl(Ve > 0 @ precision
There is a soln.
constant Whatever
func. of
this class

Lower Bound

No. of steps
the optim.
Ufixan e s. t. needs for €
precision
| give u a const. and a bad soln.

func. belongs to F class




Turn Cutting Plane into Optimization

e Given: Green function and a second function
that lies below green function

e |dea:

— Minima of second function will always lie below
blue function

— Red points are always above true minima
— Gap tells how far away u r from the optimum

* Solution: Optimize the gap to solve the
problem



