Machine Learning in Image Analysis Day 1

Anirban Mukhopadhyay

Zuse Institute Berlin

Organization

- Why Machine Learning for Image Analysis
- Image Analysis Perspective
- Types of Model
- Empirical Risk Minimization
- Essentials of convexity (Sets, Function, Operations)
- Intro to linear SVM
- Cutting Plane Method to solve linear SVM

Machine Learning

- Field of study that gives computers the ability to learn without being explicitly programmed
 - Arthur Samuel, 1959 / Wiki definition

Supervised	Semi-Supervised	Unsupervised
Generative	Metric Learning	Clustering
Discriminative		

Why ML for IA?

- IA: Infer information from visual data
 - Segmentation
 - Registration
 - Recognition
 - Image Guided Therapy ...
- Large variations and complexity
 - No analytical solution
- Resort to ML

IA problems that can benefit from ML

- NP-Hard (ex: scene matching)
- Ill-defined (ex: 3D reconstruction from a single image)
- Right answer is subjective (ex: segmentation)
- Hard to model (ex: scene classification)

 ML uses statistical reasoning to find approximate solutions for tackling the above difficulties.

Formulating and Evaluating IA problems as ML

- Topic of Day 3
 - Read 4 sample papers (Medical Image Analysis + Computer Vision)
 - Critically analyze the contributions
 - It's not about blind accuracy plot w.r.t. different off-the-shelf methods ... there are many more nuances

List of papers: www.zib.de/MLIA

Image Analysis Perspective

- Given visual data x, infer world state y
 - Discrete -> Classification
 - Continuous -> Regression

Image Analysis Perspective

- Given visual data x, infer world state y
 - Discrete -> Classification
 - Continuous -> Regression

- Components of the solution
 - Model
 - Learning Algorithm
 - Inference Algorithm

Components of the solution (Contd.)

 Model: Mathematically relate visual data x with world state y

Components of the solution (Contd.)

 Model: Mathematically relate visual data x with world state y

• Learning Algo: Fit parameters θ using paired training examples (x_i, y_i)

Components of the solution (Contd.)

 Model: Mathematically relate visual data x with world state y

• Learning Algo: Fit parameters θ using paired training examples (x_i, y_i)

 Inference Algo: Take a new observation x and use learnt model to predict world state y

Types of Model

	Generative	Discriminative
Local	Max. Likelihood	Empirical Risk Minimization
Local+Prior	MAP	Support Vector Machines
Model Averaging	Bayesian	Maximum Entropy Discrimination

No Definitive Answer.

- No Definitive Answer.
- Some considerations:
 - Inference is generally simpler with discriminative

- No Definitive Answer.
- Some considerations:
 - Inference is generally simpler with discriminative
 - Image data are generally much higher dimensional than world state – modeling is costly

- No Definitive Answer.
- Some considerations:
 - Inference is generally simpler with discriminative
 - Image data are generally much higher dimensional than world state – modeling is costly
 - If wishing to build information about the data generation process – generative

- No Definitive Answer.
- Some considerations:
 - Inference is generally simpler with discriminative
 - Image data are generally much higher dimensional than world state – modeling is costly
 - If wishing to build information about the data generation process – generative
 - If missing data in training/ testing generative

- No Definitive Answer.
- Some considerations:
 - Inference is generally simpler with discriminative
 - Image data are generally much higher dimensional than world state – modeling is costly
 - If wishing to build information about the data generation process – generative
 - If missing data in training/testing generative
 - Expert knowledge incorporation as prior generative

Empirical Risk Minimization

Quantification: Performance is Quantified by a loss function

Most Importantly: Generalize to unseen data – this is where optimization

in ML is different from any other field

Idea: Avoid over-fitting by penalizing complex models

Empirical Risk Minimization

Quantification: Performance is Quantified by a loss function

Most Importantly: Generalize to unseen data – this is where optimization

in ML is different from any other field

Idea: Avoid over-fitting by penalizing complex models

Training Data: $\{x_1, x_2, ..., x_m\}$

Training Labels: $\{y_1, y_2, ..., y_m\}$

Learn a vector: w

minimize
$$\lambda \omega(w) + \frac{1}{m} \sum_{i=1}^{m} I(x_i, y_i, w)$$

Regularizer

Risk

ML directions

- Engineering part: Choose a loss and a regularizer based on your problem and go on .
- Optimization Part: If EMP can be turned into a convex problem...u can manage lots of things

Our Focus: Intuition rather than rigor

Convex Function

• A function f is convex if and only if, for all x, x' and $\lambda \in (0,1)$

$$f(\lambda x + (1 - \lambda)x') \le \lambda f(x) + (1 - \lambda)f(x')$$

Essential Convex Functions

Negative Entropy: $f(x) = x \log x + (1-x) \log (1-x)$

Un-normalize Negative Entropy: f(x,y) = xlogx + ylogy - x - y

Hinge Loss: f(x) = max(0,1-x)

Convex set

Set C is convex if and only if

$$\lambda x + (1 - \lambda)x' \in C$$

 If a function is convex, all its level sets are convex

Function is convex if and only if epigraph is a convex set

Level Set Example

Level Set Example

BUT the converse is not true (quasi-convex)

Essential operations that preserve convexity

Set Operations

- Intersection of Convex Sets
- Image of Convex Set under Linear Transf.
- Inv. Image of Convex Set under Linear Transf.

Essential operations that preserve convexity

Set Operations

- Intersection of Convex Sets
- Image of Convex Set under Linear Transf.
- Inv. Image of Convex Set under Linear Transf.

Function Operations

- Linear Combination with non-negative weights
- Point wise Maximum
- Projection along a direction
- Composition with affine function

First Order Properties

 First order Taylor Approx. Globally lower bounds a function

$$f(x) \ge f(x') + \langle x - x', \nabla f(x') \rangle$$

Where ever u go, the line will never intersect the function anywhere else apart from the red point

Bregman Divergence

$$\triangle_f(x,x') = f(x) - f(x') - \langle x - x', \nabla f(x') \rangle$$

As given by the function, how far away is x from x'

Bcoz 1st order Taylor Expansion is global lower bound, f(x) is larger than the other

- 2 Popular flavors
 - Euclidean Distance Squared
 - Unnormalized Relative Entropy

Given a smooth (differentiable) convex function f

$$\nabla f(x) = 0$$

What if function is non-smooth?

Given a smooth (differentiable) convex function f

$$\nabla f(x) = 0$$

What if function is non-smooth?

Given a smooth (differentiable) convex function f

$$\nabla f(x) = 0$$

What if function is non-smooth?

Given a smooth (differentiable) convex function f

$$\nabla f(x) = 0$$

What if function is non-smooth?

Subgradients - to the rescue

Given a smooth (differentiable) convex function f

$$\nabla f(x) = 0$$

What if function is non-smooth?

Subgradients - to the rescue

Even in non-differentiable places, subgradient will always exist

You can always draw at least one tangent line

Given a smooth (differentiable) convex function f

$$\nabla f(x) = 0$$

What if function is non-smooth?

Remarkable property: A convex function is at least sub-differentiable everywhere

Even in non-differentiable places, subgradient will always exist

You can always draw at least one tangent line

Solving linear SVM

Solving linear SVM

 Maximally noncommittal hyperplane

Solving linear SVM

 Maximally noncommittal hyperplane

Optimization Problem

$$\underset{w,b}{\mathsf{maximize}} \frac{2}{||w||} \quad \mathsf{s. t.} \quad y_i(< w, x_i > +b) \geq 1, \forall i$$

Or

$$\underset{w,b}{\text{minimize}} \frac{1}{2} ||w||^2$$
 s. t. $y_i (< w, x_i > +b) \ge 1, \forall i$

More general ML problem

- Data is not exactly linearly separable
- Introduce slack variable

$$\underset{w,b,\xi}{\text{minimize}} \frac{1}{2} ||w||^2 \quad \text{s. t.} \quad y_i(< w, x_i > +b) \ge 1 - \xi_i, \xi_i \ge 0, \forall i$$

Slack Issues

- No control over slack variable, being $\xi_i \geq 0$
- Can go to infinity and find some useless solution

Slack Issues

- No control over slack variable, being $\xi_i \geq 0$
- Can go to infinity and find some useless solution
- Standard Solution: Penalize slack variables
 - Ensures nice classification for most of the points
 - Ready to pay the price for hopeless ones

$$\underset{w,b,\xi}{\text{minimize}} \frac{\lambda}{2} ||w||^2 + \frac{1}{m} \sum_{i=1}^{m} \xi_i \quad \text{s. t.} \quad y_i (< w, x_i > +b) \ge 1 - \xi_i, \xi_i \ge 0, \forall i$$

Slack Issue Contd.

$$\underset{w,b,\xi}{\text{minimize}} \frac{\lambda}{2} ||w||^2 + \frac{1}{m} \sum_{i=1}^{m} \xi_i \quad \text{s. t.} \quad y_i (< w, x_i > +b) \ge 1 - \xi_i, \xi_i \ge 0, \forall i$$

Slack Issue Contd.

$$\underset{w,b,\xi}{\text{minimize}} \frac{\lambda}{2} ||w||^2 + \frac{1}{m} \sum_{i=1}^{m} \xi_i \quad \text{s. t.} \quad y_i (< w, x_i > +b) \ge 1 - \xi_i, \xi_i \ge 0, \forall i$$

Or

$$\underset{w,b,\xi}{\text{minimize}} \frac{\lambda}{2} ||w||^2 + \frac{1}{m} \sum_{i=1}^{m} \xi_i \quad \text{s. t.} \quad \xi_i \ge 1 - y_i (< w, x_i > +b), \xi_i \ge 0, \forall i$$

By standard optim. trick

$$\underset{w,b,\xi}{\text{minimize}} \frac{\lambda}{2} ||w||^2 + \frac{1}{m} \sum_{i=1}^m \xi_i \quad \text{s. t.} \quad \xi_i \ge 1 - y_i (< w, x_i > +b), \xi_i \ge 0, \forall i$$

$$\underset{w,b}{\text{minimize}} \frac{\lambda}{2} ||w||^2 + \frac{1}{m} \sum_{i=1}^{m} \max(0, 1 - y_i(< w, x_i > +b))$$

By standard optim. trick

$$\underset{w,b,\xi}{\text{minimize}} \frac{\lambda}{2} ||w||^2 + \frac{1}{m} \sum_{i=1}^m \xi_i \quad \text{s. t.} \quad \xi_i \ge 1 - y_i (< w, x_i > +b), \xi_i \ge 0, \forall i$$

$$\underset{w,b}{\text{minimize}} \frac{\lambda}{2} ||w||^2 + \frac{1}{m} \sum_{i=1}^{m} \max(0, 1 - y_i(< w, x_i > +b))$$

- Minimize squared Norm (want to have small w vectors)
- Hinge Loss (Risk Minimizer)

Loss Choices

$$\underset{w,b}{\text{minimize}} \frac{\lambda}{2} ||w||^2 + \frac{1}{m} \sum_{i=1}^{m} \max(0, 1 - y_i(< w, x_i > +b))$$
 Regularizer

- Binary Loss
 - If correct, Nothing
 - If misclassification, unit loss
- But it is a nasty non-convex one, so take a convex upper bound e.g. Hinge Loss

Remember: First Order Properties

 First order Taylor Approx. Globally lower bounds a function

$$f(x) \ge f(x') + \langle x - x', \nabla f(x') \rangle$$

Lower bound is piecewise linear – can use any LP solver to get some optimum

Where ever u go, the line will never intersect the function anywhere else apart from the red point

Cutting Plane method

- Idea: Localize your function
- Given:
 - black box which can calculate function value and gradient at any given point
 - Lower bound of the function (usually 0 for Regul. Risk Minimization)
- Remember: First order Taylor expansion globally lower bounds the function

Cutting Plane Method Visual

- Function resides in shaded area
- Refinement: Every time, we take a chunk out of the shaded by taking Taylor expansion

Check out the Board

More on Cutting Plane (CP)

 CP methods work by forming piecewise linear lower bound

$$J(w) \ge J_t^{CP}(w) = \max_{1 \le i \le t} \{ J(w_{i-1}) + \langle w - w_{i-1}, \nabla J(w_{i-1}) \rangle \}$$

• At each iteration t, set $w_{0...t-1}$ is augmented by

$$w_t = \underset{w}{\operatorname{argmin}} J_t^{CP}(w)$$

Stop when gap

$$\epsilon_t = \min_{0 \le i \le t} J(w_i) - J_t^{CP}(w_t)$$

What if non-smooth function

- Cutting plane really does great in these situations, because it works on subgradients
- Choose any arbitrary subgradient and it will work.

Bundle Methods

- Stabilized Cutting Plane method (Always in practice)
- Add a regularizer to handle overfitting

– Proximal:
$$w_t = \underset{w}{\operatorname{argmin}} \{ \frac{\xi_t}{2} ||w - \hat{w}_{t-1}||^2 + J_t^{CP}(w) \}$$

Trust region:
$$w_t = \underset{w}{\operatorname{argmin}} \{J_t^{CP}(w) \text{ s. t. } \frac{1}{2}||w - \hat{w}_{t-1}||^2 \leq K_t\}$$

Level Set:
$$w_t = \underset{w}{\operatorname{argmin}} \{ \frac{1}{2} ||w - \hat{w}_{t-1}||^2 \text{ s. t. } J_t^{CP}(w) \leq \tau_t \}$$

Quadratic in the gap calculation ensures convexity and unique minima

Referenes

- [PURDUE MLSS] SVN Vishwanathan Presentation
- Computer vision: models, learning and inference, Simon J.D. Prince, Cambridge University Press, 2012
- Optimization for Machine Learning, Sra, Nowozin, Wright, MIT Press, 2012
- Numerical Optimization, Nocedal, Wright, Springer, 1999
- Machine Learning in Computer Vision A Tutorial, Joshi, Cherian and Shivalingam, UMN

Cutting Plane Method Visual

- Function resides in checkerboard area
- Every time, we take a chunk out of the checkerboard by taking Taylor expansion

Turn Cutting Plane into Optimization

- Given: Green function and a second function that lies below green function
- Idea:
 - Minima of second function will always lie below blue function
 - Red points are always above true minima
 - Gap tells how far away u r from the optimum
- Solution: Optimize the gap to solve the problem

Understanding Bounds

Lower Bound

 $\tau(\epsilon,J_{\epsilon})\geq \frac{c}{\epsilon}$ No. of steps the optim. needs for ϵ precision soln.

Turn Cutting Plane into Optimization

- Given: Green function and a second function that lies below green function
- Idea:
 - Minima of second function will always lie below blue function
 - Red points are always above true minima
 - Gap tells how far away u r from the optimum
- Solution: Optimize the gap to solve the problem