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» Bayesian Practicalities
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Basic Mathematical Structures of ML, MAP
and Bayesian

» Fitting probability models to data
» Generative Machine Learning
» This is called learning because we learn about parameters (Training)

®» Also concerns calculating the probability of a new data point

» Evaluating a predictive distribution (Testing)




Basic Bayesian

X — {X3 g:l

where each x; is a realization of a random vari-
able x. Each observation x; iIs, in general,
a data point in a multidimensional space.
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Basic Bayesian

X — {X3 g:l

where each x; is a realization of a random vari-
able x. Each observation x; iIs, in general,
a data point in a multidimensional space.

We may wish to estimate the parameters
© with the help of the Bayes' Rule

prob(X|©) - prob(©)
prob(X)

prob(©|X) =

likelithood - prior

posterior = :
evidence



ML vs MAP vs Bayesian

We seek that value for ® which maximizes the
likelihood shown on the previous slide. That
IS, we seek that value for ©® which gives largest
value to

prob(X|©)
We denote such a value of © by @ML.




ML vs MAP vs Bayesian

©nrap = argénax prob(©|X)

=  argmax Lot CHC )Rl )
S prob(X)

- argmax prob(X|©) | prob(©)
S

= argmax H p'r*ob(x,,;|@) : pfrob(@)
= X, €EX




ML vs MAP vs Bayesian

prob(X) = /@prob(?ﬂ@) - prob(®) dO©




Example of calculating ML

® Fitting a univariate normal with pdf: Pr(z|u, 0%) = Normg i, 0?] = !  exp [—0.5

2mo

(x — #—)2]

0-2
» Quiz time: Parameters?
= Simplest Strategy:

» Evaluate pdf for each data point separately

» Take the product




Example of calculating ML

o o . . . 1 a1 — 2 2
= Fitting a univariate normal with pdf: Pr(z|u, 02) = Normg [, o] = — exp [—0.5(‘1 2“) ]
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» Quiz time: Parameters?
= Simplest Strategy:
» Evaluate pdf for each data point separately
» Take the product
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Log-likelihood e

2.0

» Maximum likelihood solution occurs at peak

» How to find peak? By taking derivative and equating to O

0.0

®» Resultfing egns are messy 10

» Take logarithm of the expression (monotonically increasing, so position of max in
transformed space remains same)

» | ogarithm also decouples contribution by changing product to sum

o f , oL (z: — p) "~ Differentiating |
hon T {Z o8 (Nomme. ) ‘ o g o log likelihood L
! I
= argmax [—U.Sflog[Qﬂ: —O.SIlogaﬁ—O.SZM] _ Q & —0 W*r-:l-- mean,

= o2 o2 __similar for var |



Comparing ML with MAP

Pr(xzy. r|p, o? (p, 0 Pr(zy. . 1lp,0?)Pr(p,o?)

| o -

—2.0 /.lv 2.0 2.0 —2.0 /l 2.0

Likelihood Prior Posterior




Log MaP derivations + its relation 1o
Empirical Risk Minimization

© /4 p=argmax ( Y log prob(x;|®) + log prob(@))
S X;EX

minimize (—Z log prob(x;|®©) =—|log P?’Ob(@))
kX!;EX

1
' . . A - l !'l I"'
minimize | Aw(w)|+ — Z (i, yi, w)

w

Regularizer Risk




Expectation Maximization algorithm

» Quick facts:
» Computes Maximum Likelihood estimate in the presence of missing data

» Efficient iterative procedure for maximizing log-likelihood

Maximum likelihood from incomplete data via the EM algorithm

AP Dempster, NM Laird, DB Rubin - Journal of the royal statistical society. ..., 1977 - JSTOR
A broadly applicable algu::-rithm for computing maximum likelihood estimates from incomplete
data is presented at various levels of generality. Theory showing the monctone behaviour of
the likelithood and convergence of the algorithm is derived. Many examples are sketched,

Cited by 44451 YRelated articles  All 70 versions Cite Save




Why EM<

» Despite the fact that EM can occasionally get stuck in a local maximum, 3
super cool stuffs about EM

» ability fo simultaneously optimize a large number of variables

» the ability fo find good estimates for any missing information in data at the
same time

» GMM: the ability to create both the traditional *hard” clusters and not-so-
traditional “soft” clusters.

» ‘“Hard”: disjoint partition of Data

» “Soft”: allowing a data point to belong to two or more clusters at the same time,
the “level of membership”



Main Idea of EM (lterative Procedure)

» [F-Step

» Fstimate missing data given observed data and current estimate

» M-Step

= Maximize likelihood function under the assumption that missing data is known




Derivation of EM

» Maximizing L = update s.t. L(#) > L(A,) = mMAXimize L) — L(4,) = mP(X[6) — n P(X|6,,)
» Hidden / latent variable (Z) can be infroduced here

® As unobserved / missing variable

» Arfifact to make the solution tractable

P(X|0) =) P(X|z0)P(zl0)

L(H) — L(6,) =1In (Z P(X|z, Q)P(ze})) —InP(X|0,).




Jensen’s Inequality

T T

1112)&1-:51- > Z}-.i In(z;) If A; = 0 with EL] A =1

i=1 i=1




Contd.

L) —L#,) = In (Z’P (X|z,0)P z|9}) — InP(X]|6,)
B Pz X, 0,)
= m(zz::n P(z|0) - PEIX.0. ))—mmme)
A m(Zsze X'Egzzg)—lﬂxg

\ P(ng (z]6)

3, P(2X,6,) = 1 sothat mnP(X|8,) = Y, P(z/X, 0,) In P(X6,)
= ZPZXQ ) In P(ngw
P(z|X, 0, (P(X|6,)

Inside In,
subtraction
means
( |9“)' division

|




Contd.

L(6) = L(6,) + A(66,,)

A To simplif
1(6]6n) 2 L(62) + A(010,)| LSO

L(0) = 1(0]6x)

[(6]9,,) is bounded above by the likelihood function L(6)

value of the functions [(0|0,,) and L(#) are equal at 6 = 6,




And last bit of PAIN!!
l.e. “more formally”

The latent/
missing variable Z
Ony1 = arg max 1(0)0,)} is tfaken into
6\P(l0 account by
= arg 1]13_}{{ -|- Z P |X {-}ﬂ)] ( | ) [:Z ) } mOXimiZing this
0 P(X[0,)P(z| X, 65) rather than log
Now drop terms w hlch are constant w.r.t. ¢ likelihood L
— argmgax-: Z Pz X,0,)InP(X|z,0)P(z 9)}
P(X z.0)F
= argmax { P(z X,0,)
6 Z /ﬁEZ’@T ( )
M_ST.ep.: = argmax { Z P(z X,60,,)InP(X, z|f) :
Maximize 0 E-step: Determine

this exprsn — roma . In P (X, z|0)} » this conditional
w.r.t. © { 4x e ' Expectation




Graphically one iteration of EM

L(9)
1(6]6,,)

ol

A
L(QH—H)

E(Hil-l—l 9?1 ]

L‘(HH} — f(gﬂ_ |gn)

()

1(8]6n)

1(6]6,,) L(g)]

Qn 6'?1 +1 =0

At each iteration of EM

_ to achieve the greatest possible increase in the value of L(#)

EM algorithm calls for selecting # such that [(#)6,,) is maximized



GMM with K-means initialization
vI-feat

GMM: KMeans intiaization
wa

» hitp://www.vlfeat.org/overview/gmm.himl

numClusters = 38;

numData = 16868;

dimension = 2;

data = rand(dimension,numData);

% Run KMeans to pre-cluster the data

[initMeans, assignments] = vl _kmeans(data, numClusters,
"Algorithm’, "Lloyd",
‘MaxNumIterations®,5);

initCovariances = zeros(dimension,numClusters);
initPriors = zeros(1l,numClusters});

% Find the initial means, covariances and priors
for i=1:numClusters
data_k = data(:,assignments==1i);
initPriors(i) = size(data_k,2) / numClusters;
if size(data_k,1) == 8 || size(data_k,2) == @
initCovariances(:,i) = diag(cov{data'));
else
initCovariances(:,i) = diag(covi{data k'));
end
end

% Run EM starting from the given parameters
[means,covariances,priors,l]l,posteriors] = vl gmm{data, numClusters,
"initialization®, "custom”’,
"InitMeans’,initMeans,
"InitCovariances',initCovariances,
‘InitPriors’,initPriors);




Parameter Estimation and predictionoft
future values from evidence

X — {X3 1?:1

where each x; I1s a realization of a random vari-
able x. Each observation x; Is, In general,
a data point In a multidimensional space.




Bayes' Rule (Reminder)

prob(X|©) - prob(©)

prob(©|X) = o ()

likelithood - prior

posterior = :
evidence




Bayes w.r.t. ML and MAP

» ML considers the parameter vector to be a constant and seeks out that
value for the constant that provides maximum support for the evidence.
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» ML considers the parameter vector to be a constant and seeks out that
value for the constant that provides maximum support for the evidence.

» MAP allows the parameter vector to take values from a distribution that
expresses our prior beliefs regarding the parameters. MAP returns that
parameter value which maximizes the posterior.
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» Both ML and MAP return only single and specific values




Bayes w.r.t. ML and MAP

» ML considers the parameter vector to be a constant and seeks out that
value for the constant that provides maximum support for the evidence.

» MAP allows the parameter vector to take values from a distribution that
expresses our prior beliefs regarding the parameters. MAP returns that
parameter value which maximizes the posterior.

» Both ML and MAP return only single and specific values

®» Bayesian estimation, by contrast, calculates fully the posterior distribution

» Qurjob is to select the value that we consider “best” in certain sense




ML, MAP and Bayesian for Normal
Parameter Estimation

Pr(zy. 1|y, o0?) Pr(p,o?) Pr(zy. 1|lp, o) Pr(p, o?)




Ditficulties of Bayesian

» Theorefical
» |ntegration at the denominator of the equation (probability of evidence)
prob(X) = /@prob(X|@) -prob(®) d©

» Conjugate prior: If we have a choice in how we express our prior beliefs, we must
use that form which allows to carry out the integration




Ditficulties of Bayesian

» Theorefical
» |ntegration at the denominator of the equation (probability of evidence)
prob(X) = /@ prob(X|®) - prob(©) d©

» Conjugate prior: If we have a choice in how we express our prior beliefs, we must
use that form which allows to carry out the integration

» Practical

» |ntegration in denominator is trivial as it is just a normalizer if you have reasonably
high number of samples

= Main problem: observation model you want to use




Importance Sampling and Monte
Carlo Integration to the rescue




Solving Probabillistic Integrals
Numerically

» |ntegrals that involve probability density functions in the integrands are
ideal for solution by Monte Carlo methods.

Bg(X,©) = [ g(x,©) prob(e)do

» Monte Carlo approach to solving the integration is
®» draw samples from the probability distribution

» cstimate the integral with the help of these samples.




Problems

» When the distribution is simple, such as uniform or normal, it is trivial to draw
such samples from the distribution and use the following as approximation

B(g(X,0)) ~ —3 g(x,0)
1=1




Problems

» When the distribution is simple, such as uniform or normal, it is trivial to draw
such samples from the distribution and use the following as approximation

B(g(X,©)) ~ %Z (x,0)

®» However, in Bayesian estimation, probability distribution can be expected
to be arbitrary

®» Fven if some samples are drawn, the approximation won't work any more




Deeper Explanation of the Problem

samples drawn/from prob()




Deeper Explanation of the Problem

samples drawn/from prob()




Importance Sampling

» Sampling not only based on priors, but also where function g() acquires
significant values

» Situations where we have no reason to believe that g() is compatible with ‘prior’




Importance Sampling

» Sampling not only based on priors, but also where function g() acquires
significant values

» Situations where we have no reason to believe that g() is compatible with ‘prior’

» |mportance sampling brings into play another distribution g(), known as the
sampling distribution or the proposal distribution,

» Help us do a better job of randomly sampling the values spanned by ©




Integral remains unchanged

[9(x,©) EFLS) g(@) de

[ ST a(©) dO

» Aslong as dividing by g() does not introduce any singularities




Practicalities of g}

» We can use “any” proposal distribution g() to draw random samples
provided we now think:

prob(©)
q(©)
» We must now also estimate the integration in the denominator
J1(©)q(©)do t(©) = prob(©)/q(O©)

» |mplication: we must now first construct the weights (‘importance weights’)
at the random samples drawn according to the probability distribution g()

s(©) = gX,0)

| ) . .

R L CORN noi=1 W' - 9(O")
o L -
q(©") =3 g w!




Comparing different proposals for gf)

» Monte-Carlo integration is an expectation of some entity g()

[ 9(©) prob@)de = E@(©) ~ Y W'g(e)
=1

» gssociate a variance with this estimate, the Monte Carlo variance

/ 9(©) — E(g(O)]2 - prob(©) d® = Var(g(©))

» Discrete approximation of the variance similar to MC Integration
» Goal: Choose the proposal distribution g() that minimizes the MC variance.



Still with the Problem of Having to Draw
Samples According to a Prescribed
DISTI’IbUTIOﬂ

For simplicity, p(x) denotes the distribution whose samples we wish to draw
from for the purpose of Monte Carlo integration, f(x) arbitrary function

» Goal: Estimate the integral [, p(x) f(x)dx

= Trivial, if p(x) is simple

= Non frivial in complex cases

» Modern Approach: Markov-Chain Monte-Carlo




Markov-Chain Monte-Carlo
(MCMC)

» [or the very first sample x,, any value that belongs to the domain of p(x),
that is, any randomly chosen value x where p(x) > 0 is acceptable.
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®» Next sample, randomly choose a value from the interval where p(x) > 0 but
must “reconcile” it with x,. Let's denote the value we are now looking at as
x* and refer to it as our candidate for x,.
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®» Next sample, randomly choose a value from the interval where p(x) > 0 but
must “reconcile” it with x,. Let's denote the value we are now looking at as
x* and refer to it as our candidate for x,.

» ‘reconcile”: select alarge number of samples in the vicinity of the peaks in
p(x) and, relatively speaking, fewer samples where p(x) is close to 0.
Capture this infuition by the ratio al = p(x*)/p(x,).

» |[fal > 1, then accepting x* as x,



Markov-Chain Monte-Carlo
(MCMC)

» [or the very first sample x,, any value that belongs to the domain of p(x),
that is, any randomly chosen value x where p(x) > 0 is acceptable.

®» Next sample, randomly choose a value from the interval where p(x) > 0 but
must “reconcile” it with x,. Let's denote the value we are now looking at as
x* and refer to it as our candidate for x,.

» ‘reconcile”: select alarge number of samples in the vicinity of the peaks in
p(x) and, relatively speaking, fewer samples where p(x) is close to 0.
Capture this infuition by the ratio al = p(x*)/p(x,).

» |[fal > 1, then accepting x* as x,

» |fal <1, exercise some caution in accepting x* for x,, as explained on the
next slide.



MCMC contd.

» Want to accept x* as x, with some hesitation when al <1
» hesitation being greater the smaller the value of al in relation to unity

® cqapture this intuition by saying that let’'s accept x* as x2 with probability al.

Check out the board for Infuition




MCMC contd.

» Want to accept x* as x, with some hesitation when al <1
» hesitation being greater the smaller the value of al in relation to unity

® cqapture this intuition by saying that let’'s accept x* as x2 with probability al.

Check out the board for Infuition

Why Markov Chain?




Gibbs sampler — special case of MCMC

» |dea: The Gibbs sampler samples each dimension of X separately through
the univariate conditional distribution along that dimension vis-a-vis the rest.
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other n — 1 variables in X(7) are given constant values.
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» Main Observation: Even when the joint distribution p(x) is multimodal, the
univariate condifional distribution for each x, when all the other variables
are held constant, is likely to be approximable by an unimodal distribution




Gibbs sampler — special case of MCMC

ldea: The Gibbs sampler samples each dimension of X separately through
the univariate conditional distribution along that dimension vis-a-vis the rest.

Individual components of X = (x,, ..., X,
Also, XFI=(Xq,. 00X 1 Xy 1,00 X)) T
Focus: Univariate condifional distribution: p(x; | Xt), fori=1,...,n

Keep in mind: Conditional distribution for x, makes sense only when the
other n — 1 variables in X(7) are given constant values.

Main Observation: Even when the joint distribution p(x) is multimodal, the
univariate condifional distribution for each x, when all the other variables
are held constant, is likely to be approximable by an unimodal distribution

Implication: Individual scalar variables can be approx. by std. rand gen SW



Gibbs Sampling

Initfialization: Choose random values for x,(9,...,x ©)

For k=1... K scans
= Draw asample for x; by: x,® ~ p(x; | xtN=(x, K1, x K1) ))
» Draw a sample for x, by: x, ~ p(x, | x;=x;, K, xE12= (x50, x 1)) )
» Keep doing it for nextjscalars:j=3 ... n

End For

In this manner, after K scans, we end up with K sampling points for vector
variable X



References

» Avinash Kak, ML, MAP and Bayesian — The Holy Trinity of Parameter
Estimation and Data Prediction, Purdue University, 2014

» Avinash Kak, Monte Carlo Estimation in Bayesian Integration, Purdue
University, 2014

= Sean Borman, The Expectation Maximization Algorithm A short tutorial, 2004

» A.P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from
iIncomplete data via the em algorithm. Journal of the Royal Stafistical
Society: Series B, 39(1):1-38, November 1977.

» Computer vision: models, learning and inference, Simon J.D. Prince,
Cambridge University Press, 2012

» Opftimizafion for Machine Learning, Sra, Nowozin, Wright, MIT Press, 2012




Mathematical developments that lead
to the EM algorithm

Ao

Proposition 1 —In(x) us strictly conver on (0, o0).

Theorem 2 (Jensen’s inequality) Let [ be a co-m}e;z:b
wmterval I. If vy, w9, ... €1 and Ay Ag, ..., Ay = 0 wn
n n 'Eﬁ
I (Z /\e:ut‘z') < Z Aif(4) -
i=1 i=1




£ (9‘11 | 91‘1 )

L(gn) T ‘&(911 9?1)
P(X|z,0,)P(z|0,)

P(z X, 0,)P(X|0,)

P(X,z0,)
P(X,z0,)

L(0n)+ > P(z[X.0,)In1

L(0n)+ > P(z[X,0,)In

L(6n)+ > P(z[X,0,)In



MCMC contd.

» Want to accept x* as x, with some hesitation when al <1
» hesitation being greater the smaller the value of al in relation to unity
® cqapture this intuition by saying that let’'s accept x* as x2 with probability al.

» Algorithmically:

» fire up a random-number generator that returns floating-point numbers in the
interval (O, 1).

» |etf’'s say the number returned by the random-number generator is u.

®» gcceptx*asx,ifu<al.

® |nfuition towards original Metropolis Algorithm



Comparison contd.

» Goal: Choose the proposal distribution g() that minimizes the MC variance.

» proposal distribution that minimizes the Monte-Carlo variance is given by

(©) o« |g(©) - prob(O)|

» Not a complete solution to the choosing of the proposal distribution, the
product g()prob() may not sample g() properly because the former goes to
zero where it should not.




