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Organization 

 Recap 

 Basic Mathematical Structures of ML, MAP and Bayesian 

 Basics 

 ML vs MAP vs Bayesian 

 Simple model fitting example using ML 

 Expectation Maximization algorithm 

 Basics 

 EM derivation 

 Importance Sampling and MC Integration 

 Bayesian Practicalities   
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Recap Day 1 

 Why ML for IA? 

 Intuition behind choosing either 

discriminative or generative 

 Essentials of Convex sets and functions 

 Properties of 1st order Taylor Approximation 

 Linear SVM Formulation 

 Cutting Plane algo to solve linear SVM 
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Basic Mathematical Structures of ML, MAP 

and Bayesian 

 
 Fitting probability models to data  

 Generative Machine Learning  

 This is called learning because we learn about parameters (Training) 

 Also concerns calculating the probability of a new data point 

 Evaluating a predictive distribution (Testing) 

 

4 



Basic Bayesian  
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Basic Bayesian  
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Basic Bayesian  
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ML vs MAP vs Bayesian 8 



ML vs MAP vs Bayesian 9 



ML vs MAP vs Bayesian 10 



Example of calculating ML 

 Fitting a univariate normal with pdf:                                               

 Quiz time: Parameters? 

  Simplest Strategy:  

 Evaluate pdf for each data point separately  

 Take the product 
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Log-likelihood 

 Maximum likelihood solution occurs at peak 

 How to find peak? By taking derivative and equating to 0 

 Resulting eqns are messy 

 Take logarithm of the expression (monotonically increasing, so position of max in 

transformed space remains same) 

 Logarithm also decouples contribution by changing product to sum 
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Differentiating 

log likelihood L 

w.r.t. mean, 

similar for var 



Comparing ML with MAP 

           Likelihood                                     Prior                                   Posterior   
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Log MaP derivations + its relation to 

Empirical Risk Minimization 
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Regularizer Risk 



Expectation Maximization algorithm 

 Quick facts: 

 Computes Maximum Likelihood estimate in the presence of missing data 

 Efficient iterative procedure for maximizing log-likelihood 
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Why EM? 

 Despite the fact that EM can occasionally get stuck in a local maximum, 3 
super cool stuffs about EM 

 

 ability to simultaneously optimize a large number of variables 

 the ability to find good estimates for any missing information in data at the 
same time 

 GMM: the ability to create both the traditional “hard” clusters and not-so-
traditional “soft” clusters. 

 “Hard”: disjoint partition of Data 

 “Soft”: allowing a data point to belong to two or more clusters at the same time, 
the “level of membership”  
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Main Idea of EM (Iterative Procedure) 

 E-Step 

 Estimate missing data given observed data and current estimate 

 

 

 M-Step 

 Maximize likelihood function under the assumption that missing data is known 
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Derivation of EM 

 Maximizing L ≡ update s.t.                    ≡  maximize   

 Hidden / latent variable (Z) can be introduced here 

 As unobserved / missing variable 

 Artifact to make the solution tractable  
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Jensen’s Inequality 20 

if 



Contd. 21 

Inside ln, 
subtraction 
means 
division 



Contd. 22 

[To simplify 
notations] 



And last bit of PAIN!!  

i.e. “more formally” 
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The latent/ 

missing variable Z 

is taken into 

account by 

maximizing this 

rather than log 

likelihood L 

E-step: Determine 

this conditional 

Expectation 

M-step: 

Maximize 

this exprsn 

w.r.t. θ 



Graphically one iteration of EM 
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At each iteration of EM 



GMM with K-means initialization 

vl-feat 

 http://www.vlfeat.org/overview/gmm.html 
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Parameter Estimation and predictionof 

future values from evidence 
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Bayes’ Rule (Reminder) 27 



Bayes w.r.t. ML and MAP 

 ML considers the parameter vector to be a constant and seeks out that 

value for the constant that provides maximum support for the evidence. 
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 MAP allows the parameter vector to take values from a distribution that 

expresses our prior beliefs regarding the parameters. MAP returns that 

parameter value which maximizes the posterior. 
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expresses our prior beliefs regarding the parameters. MAP returns that 

parameter value which maximizes the posterior. 

 Both ML and MAP return only single and specific values 
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Bayes w.r.t. ML and MAP 

 ML considers the parameter vector to be a constant and seeks out that 

value for the constant that provides maximum support for the evidence. 

 MAP allows the parameter vector to take values from a distribution that 

expresses our prior beliefs regarding the parameters. MAP returns that 

parameter value which maximizes the posterior. 

 Both ML and MAP return only single and specific values 

 

 Bayesian estimation, by contrast, calculates fully the posterior distribution 

 Our job is to select the value that we consider “best” in certain sense 
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ML, MAP and Bayesian for Normal 

Parameter Estimation 
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Difficulties of Bayesian 

 Theoretical 

 Integration at the denominator of the equation (probability of evidence) 

 

 Conjugate prior: If we have a choice in how we express our prior beliefs, we must 

use that form which allows to carry out the integration 
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Difficulties of Bayesian 

 Theoretical 

 Integration at the denominator of the equation (probability of evidence) 

 

 Conjugate prior: If we have a choice in how we express our prior beliefs, we must 

use that form which allows to carry out the integration 

 Practical 

 Integration in denominator is trivial as it is just a normalizer if you have reasonably 

high number of samples 

 Main problem: observation model you want to use 
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Importance Sampling and Monte 

Carlo Integration to the rescue 
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Solving Probabilistic Integrals 

Numerically 

 Integrals that involve probability density functions in the integrands are 

ideal for solution by Monte Carlo methods. 

 

 

 

 

 Monte Carlo approach to solving the integration is  

 draw samples from the probability distribution  

 estimate the integral with the help of these samples. 
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Problems 

 When the distribution is simple, such as uniform or normal, it is trivial to draw 

such samples from the distribution and use the following as approximation 
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Problems 

 When the distribution is simple, such as uniform or normal, it is trivial to draw 

such samples from the distribution and use the following as approximation 

 

 

 

 However, in Bayesian estimation, probability distribution can be expected 

to be arbitrary 

 Even if some samples are drawn, the approximation won’t work any more 

38 



Deeper Explanation of the Problem 39 



Deeper Explanation of the Problem 40 



Importance Sampling 

 Sampling not only based on priors, but also where function g() acquires 

significant values 

 Situations where we have no reason to believe that g() is compatible with ‘prior’ 
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Importance Sampling 

 Sampling not only based on priors, but also where function g() acquires 

significant values 

 Situations where we have no reason to believe that g() is compatible with ‘prior’ 

 

 Importance sampling brings into play another distribution q(), known as the 

sampling distribution or the proposal distribution,  

 Help us do a better job of randomly sampling the values spanned by  

42 



Integral remains unchanged 

 As long as dividing by q() does not introduce any singularities 
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Practicalities of q() 

 We can use “any” proposal distribution q() to draw random samples 

provided we now think: 

 

 

 We must now also estimate the integration in the denominator 

 

 Implication: we must now first construct the weights (‘importance weights’) 

at the random samples drawn according to the probability distribution q() 
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Comparing different proposals for q() 

 Monte-Carlo integration is an expectation of some entity g() 

 

 

 

 associate a variance with this estimate, the Monte Carlo variance 

 

 

 

 Discrete approximation of the variance similar to MC Integration 

 Goal: Choose the proposal distribution q() that minimizes the MC variance. 
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Still with the Problem of Having to Draw 

Samples According to a Prescribed 

Distribution 
 For simplicity, p(x) denotes the distribution whose samples we wish to draw 

from for the purpose of Monte Carlo integration, f(x) arbitrary function 

 Goal: Estimate the integral 

 

 Trivial, if p(x) is simple 

 Non trivial in complex cases 

 

 Modern Approach: Markov-Chain Monte-Carlo 
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Markov-Chain Monte-Carlo 

 (MCMC) 

 For the very first sample x1, any value that belongs to the domain of p(x), 

that is, any randomly chosen value x where p(x) > 0 is acceptable. 
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Markov-Chain Monte-Carlo 

 (MCMC) 

 For the very first sample x1, any value that belongs to the domain of p(x), 

that is, any randomly chosen value x where p(x) > 0 is acceptable. 

 Next sample, randomly choose a value from the interval where p(x) > 0 but 

must “reconcile” it with x1. Let’s denote the value we are now looking at as 

x* and refer to it as our candidate for x2. 
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 Next sample, randomly choose a value from the interval where p(x) > 0 but 

must “reconcile” it with x1. Let’s denote the value we are now looking at as 

x* and refer to it as our candidate for x2. 

 “reconcile”:  select a large number of samples in the vicinity of the peaks in 

p(x) and, relatively speaking, fewer samples where p(x) is close to 0. 

Capture this intuition by the ratio a1 = p(x*)/p(x1).  

 If a1 > 1, then accepting x* as x2 
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Markov-Chain Monte-Carlo 

 (MCMC) 

 For the very first sample x1, any value that belongs to the domain of p(x), 

that is, any randomly chosen value x where p(x) > 0 is acceptable. 

 Next sample, randomly choose a value from the interval where p(x) > 0 but 

must “reconcile” it with x1. Let’s denote the value we are now looking at as 

x* and refer to it as our candidate for x2. 

 “reconcile”:  select a large number of samples in the vicinity of the peaks in 

p(x) and, relatively speaking, fewer samples where p(x) is close to 0. 

Capture this intuition by the ratio a1 = p(x*)/p(x1).  

 If a1 > 1, then accepting x* as x2 

 If a1 < 1, exercise some caution in accepting x* for x2, as explained on the 

next slide. 
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MCMC contd. 

 Want to accept x* as x2 with some hesitation when a1 < 1  

 hesitation being greater the smaller the value of a1 in relation to unity 

 capture this intuition by saying that let’s accept x* as x2 with probability a1. 
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Check out the board for Intuition 



MCMC contd. 

 Want to accept x* as x2 with some hesitation when a1 < 1  

 hesitation being greater the smaller the value of a1 in relation to unity 

 capture this intuition by saying that let’s accept x* as x2 with probability a1. 
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Why Markov Chain? 

Check out the board for Intuition 



Gibbs sampler – special case of MCMC 

 Idea: The Gibbs sampler samples each dimension of X separately through 

the univariate conditional distribution along that dimension vis-a-vis the rest. 
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54 



Gibbs sampler – special case of MCMC 

 Idea: The Gibbs sampler samples each dimension of X separately through 

the univariate conditional distribution along that dimension vis-a-vis the rest. 

 Individual components of X = (x1, …, xn)T 

 Also, X(-i)=(x1,…,xi-1,xi+1,…,xn)T  

 Focus: Univariate conditional distribution: p(xi|X(-i)), for i=1,…,n  

55 



Gibbs sampler – special case of MCMC 

 Idea: The Gibbs sampler samples each dimension of X separately through 

the univariate conditional distribution along that dimension vis-a-vis the rest. 

 Individual components of X = (x1, …, xn)T 

 Also, X(-i)=(x1,…,xi-1,xi+1,…,xn)T  

 Focus: Univariate conditional distribution: p(xi|X(-i)), for i=1,…,n  

 Keep in mind: Conditional distribution for xi makes sense only when the 

other n − 1 variables in X(−i) are given constant values. 

56 



Gibbs sampler – special case of MCMC 

 Idea: The Gibbs sampler samples each dimension of X separately through 

the univariate conditional distribution along that dimension vis-a-vis the rest. 

 Individual components of X = (x1, …, xn)T 

 Also, X(-i)=(x1,…,xi-1,xi+1,…,xn)T  

 Focus: Univariate conditional distribution: p(xi|X(-i)), for i=1,…,n  

 Keep in mind: Conditional distribution for xi makes sense only when the 

other n − 1 variables in X(−i) are given constant values. 

 Main Observation: Even when the joint distribution p(x) is multimodal, the  

univariate conditional distribution for each xi, when all the other variables 

are held constant, is likely to be approximable by an unimodal distribution 

57 



Gibbs sampler – special case of MCMC 

 Idea: The Gibbs sampler samples each dimension of X separately through 
the univariate conditional distribution along that dimension vis-a-vis the rest. 

 Individual components of X = (x1, …, xn)T 

 Also, X(-i)=(x1,…,xi-1,xi+1,…,xn)T  

 Focus: Univariate conditional distribution: p(xi|X(-i)), for i=1,…,n  

 Keep in mind: Conditional distribution for xi makes sense only when the 
other n − 1 variables in X(−i) are given constant values. 

 Main Observation: Even when the joint distribution p(x) is multimodal, the  
univariate conditional distribution for each xi, when all the other variables 
are held constant, is likely to be approximable by an unimodal distribution 

 Implication: Individual scalar variables can be approx. by std. rand gen SW  
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Gibbs Sampling 

 Initialization: Choose random values for x2
(0),…,xn

(0) 

 For k=1… K scans 

 Draw a sample for x1 by:  x1
(k) ~ p(x1|x(-1)=(x2

(k-1),…,xn
(k-1) ) ) 

 Draw a sample for x2 by: x2
(k) ~ p(x2|x1=x1

(k) ,   x(-1,-2)=(x3
(k-1),…,xn

(k-1) ) ) 

 Keep doing it for next j scalars: j = 3 … n 

 End For 

 

 In this manner, after K scans, we end up with K sampling points for vector 

variable X 
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Mathematical developments that lead 

to the EM algorithm 
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MCMC contd. 

 Want to accept x* as x2 with some hesitation when a1 < 1  

 hesitation being greater the smaller the value of a1 in relation to unity 

 capture this intuition by saying that let’s accept x* as x2 with probability a1. 

 

 Algorithmically: 

 fire up a random-number generator that returns floating-point numbers in the 
interval (0, 1).  

 Let’s say the number returned by the random-number generator is u.  

 accept x* as x2  if u < a1.  

 

 Intuition towards original Metropolis Algorithm 
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Comparison contd. 

 Goal: Choose the proposal distribution q() that minimizes the MC variance. 

 proposal distribution that minimizes the Monte-Carlo variance is given by 

 

 

 Not a complete solution to the choosing of the proposal distribution, the 

product g()prob() may not sample g() properly because the former goes to 

zero where it should not. 
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