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Decision Forest+GMM

* Generative and Discriminative together to
solve a multi label classification problem

Decision forests for tissue-specific segmentation of high-grade gliomas in multi-channel MR
D Zikic, B Glocker, E Konukoglu, A Criminisi... - ... Image Computing and ..., 2012 - Springer

Abstract We present a method for automatic segmentation of high-grade gliomas and their

subregicns from multi-channel MR images. Besides segmenting the gross tumor, we also

differentiate between active cells, necrotic core, and edema. Our discriminative approach ...

Cited by 74 Related articles  All 21 versions  Cite Save




Problem definition

Manual Seg.

* Automatic segmentation of high-grade gliomas
and their subregions from multi-channel MR

Images
* Differentiate between
— active cells
— necrotic core
— edema



Motivation of chosen method

Most of the previous research focuses on
segmentation of gross tumor

Perform a tissue specific segmentation of
three relevant tissues types

Probability estimates based on Gaussian
mixture models (GMM)

Inherently multi-label classification using
Decision Forest



Method

* |nitial tissue probability estimate

— Generative modeling using GMM

* Determination of class for spatial input point

— Discriminative learning using Decision Forest



Basics of GMM

* A Gaussian mixture model is a probabilistic
model that assumes all the data points are
generated from a mixture of a finite number
of Gaussian distributions with unknown
parameters.

— Think of mixture models as generalizing k-means
clustering to incorporate information about the

covariance structure of the data as well as the
centers of the latent Gaussians.

© http://scikit-learn.org/stable/modules/mixture.html



How GMM used here

Initial class probabilities for a given patient as posterior
probabilities

— based on likelihoods obtained by training a set of GMMs

For each class ¢, a single GMM is trained,

— captures the likelihood of the multi-dimensional intensity for
this class.

Use the probabilities directly as input for the decision
forests, in addition to the multi-channel MR data.

I=(T1-gad, T1, T2, FLAIR, DTI-q, DTI-p, pi'¢", pﬁkg , oM pean)
Generate context-based features from |



Basics of Decision Forest

Node: Training Examples, Predictor

Successive splitting of the training examples at every
node based on their feature

Splits along randomly chosen dimensions of the
feature space is considered -> maximizing the
Information Gain




Decision Forest Training

 Employ decision forests (DF) to determine a
class c for a given spatial input point, based on
the representation of x by the feature vector

* Training:
— Each tree learns a weak classifier for the feature
representation of a sample point
— Split & Grow each tree
— Tree growing is stopped at a certain tree depth



Decision Forest Testing

* Testing

— Point to be classified is pushed through each tree,
by applying the learned split functions.

— Upon arriving at a leaf node, the leaf probability is
used as the tree probability

— overall probability is computed as the average of
tree probabilities

— Actual class estimate is chosen as the most
probable class



Results

40 patients are randomly split into non-overlapping training
and testing data sets

perform experiments with following training/testing sizes:
10/30, 20/20, 30/10

each of the three ratios, 10 tests are performed, by
randomly generating 10 different training/testing splits.
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Open Discussion



Marginal Space Learning

* Edison Award winning Patent for Marginal
Space Learning

Four-chamber heart modeling and automatic segmentation for 3-D cardiac CT volumes

using marginal space learning and steerable features
Y Zheng, A Barbu, B Georgescu... - Medical Imaging, ..., 2008 - ieeexplore ieee. org

Abstract—We propose an automatic four-chamber heart seg-mentation system for the
quantitative functional analysis of the heart from cardiac computed tomography (CT)
volumes. Two topics are discussed: heart modeling and automatic medel fitting to an ...
Cited by 413 Related articles  All 19 versions Cite Save

© http://www.umiacs.umd.edu/~zhengyf/MSL/MSL.htm



Problem definition

* Quantitative functional analysis of heart from
3D CT

* Automatic heart chamber segmentation
— Heart Localization
— Model modeling and fitting to unseen volumes



Motivation of chosen method

» Efficient 3D object detection based on Marginal Space
Learning (MSL) and Steerable Features (SF).

 MSL: Incrementally learn classifiers on projected
sample distributions
— position estimation
— position-orientation estimation
— full similarity transformation estimation
* SF: Much fewer points are needed compared to the
whole volume
— sample a few points under a sampling pattern
— extract a few local features (e.g., intensity and gradient)



Full Space Learning (FSL)

Learning based approach

— It is currently the state-of-the-art in 2D object detection.

— Learning: Whether an image block contains the target object or

not.
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© Yefeng Zheng



FSL contd.

#Hypotheses: 1000 = 1,000,000

Full space learning tests all possible combinations of the transformations (over 1
million hypotheses) to pick the best one.

© Yefeng Zheng



3D challenges of FSL

# hypotheses increases exponentially w.r.t. the
dimensionality of the parameter space.

9 degrees of freedom for the similarity transformation (3
translations, 3 rotation angles, and 3 anisotropic scales).

For a small n=10, # hypotheses is n?= 1,000,000,000.

Need to develop an efficient method to explore the parameter
space.

Solution: Marginal Space Learning

© Yefeng Zheng



Marginal Space Learning Details

— Efficiently detect position, orientation, and scaling of an object
— Train 3 classifiers instead of 1 monolithic classifier
— Perform learning/detection in marginal spaces of increasing dimensions.

Object localization usmg marginal space learning
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Why MSL is efficient?

P(X, ¥)

A 2D example: A classifier trained on p(y)
can quickly eliminate a large portion
(regions 1 and 3) of the search space.

© Yefeng Zheng



Steerable Features

+ Steerable features combine advantages of global and
local features (for orientation/scale estimation)

— Global featers, (e.g., 3D Haar wavelet features), are effective to capture the global
orientation and scale information of an object.

— Local features are fast to evaluate but lose the global information.
— Sampling patterns to incorporate orientation and scale information.
— Local features (voxel intensity and gradient).

— Flexible framework.

Given a hypothesis (X, Y, alpha, Sx, Sy) ‘
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© Yefeng Zheng
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Open Discussion



Unsupervised Learning (weakly
supervised)

 Mother technique to a volume of Computer
Vision papers

Object class recognition by unsupervised scale-invariant learning

R Fergus, P Perona, A Zisserman - ... and Pattern Recognition, ..., 2003 - ieeexplore.ieee.org
Abstract We present a method to learn and recognize chject class models from unlabeled

and unsegmented cluttered scenes in a scale invariant manner. Objects are modeled as

flexible constellations of parts. A probabilistic representation is used for all aspects of the .
elated articles  All 62 versions Cite Save




Spotted Cats

Motorbikes Airplanes

3

Background

Problem
Definition

Learn from examples

Difficulties:

 Size variation

« Background clutter
 Occlusion

* Intra-class variation




Motivation of chosen method

* Model objects as flexible
constellation of parts

* Probabilistic model of the :
object MOUTH
— Shape
— Appearance
— Occlusion
— Relative Scale

 EM for learning, Bayesian
for classification




Detection & Representation osiceve
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Generative probabilistic model

Foreground model

© slide VGG

Gaussian shape pdf

Clutter model

Gaussian part appearance pdf

Gaussian
4 relative scale pdf

JNA

log(scale)

Prob. of detection

08 [0.75] 09 |

Uniform shape pdf

@

-
©

Gaussian
background

A Uniform
relative scale pdf

>
log(scale)

Poission pdf on #
detections



Formally

p(Object| X, S, A)
p(No object/ X..S. A)
p(X., S, A|Object) p(Object)
p(X, S, A|No object) p(No object)
p(X.S,A| 0) p(Object)
p(X, S, Alfyy) p(No object)

Model Structure —

p(X,S,Al0) =) p(X,S,A.h/f) =

. . heH
Likelihood > p(AIX.S.h.0) pl X|S h,0) p(S|h, 0) p(hlf)
h“‘H -’-].ppe; ance bhape Rel. bcale Other

Hypothesis h: vector of length P (# of parts), each entry in between 1...N (# Feature
regions). Background = unassigned feature regions



Recognition

Detect Feature Regions

Evaluate feature regions using model
structure R

fR>T
— Presence

Else
— Absence

End If



% correct

100

Results

Face dataset

90|

80}

70

S0

50

40

30

20}

10+

0
Q0

20 40 &0 80 100

% training images containing object

Mixing BG images in training data

% correct

100

95}F

90

85

80}

Motorbike dataset

3 4 5
Number of parts

Performance drop off with
reduced # of parts




Motorbike shape model
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Open Discussion



Relative Attributes

* Marr Prize 2011 winner

Relative attributes

D Parikh, K Grauman - Computer Vision (ICCV), 2011 IEEE ..., 2011 - ieeexplore.ieee. org
Abstract Human-nameable visual “attributes™ can benefit various recognition tasks.
However, existing techniques restrict these properties to categorical labels (for example, a
persen is 'smiling'er not, a scene is 'dry'or not), and thus fail te capture more general ...
Cited by 345 Related articles  All 23 versions  Cite Save

© Slides — Devi Parikh (Author’s website)
























Problems within Binary Attributes
Some tags are binary while some are relative.

Isturry  Has four-legs

Legs shorter ®  Tail longer Bina
than horses’ == than donkeys’ ry

las tail relative




What is visual attributes?

 Attributes are properties observable in images that have
human-designated names, such as ‘Orange’, ‘striped’, or
‘Furry’.

4-Legged White Male
Orange Symmetric Asian
Striped lonic columns Beard

Furry Classical Smiling



“Downtown Chicago”
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Binary Attributes

- Young:
Smiling:

Young:
Smiling:
Young:
Smiling:
. Young:

Smiling:

Young:
Smiling:

Yes
No

Yes
Yes

Yes
Yes

No
Yes

Yes
No

Labeling data

Relative Attributes

Young

Smiling

@;N




What Is relative attributes?

» Relative attribute indicates the
strength of an attribute in an image
with respect to other image rather
than simply predicting the presence of
an attribute.

Binary Attributes Relative Attributes
»{M Young: Yes Young
| ] Smiling: No '
=Y : 'W Q‘
oung: Yes . S
\k\{jj Smiling: Yes .. ‘L“ 2 )‘
Young: Yes
=13 Smiling: Yes Smiling
*=J Young: No ! a;l
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Advantages of Relative Attributes

* Enhanced human-machine communication
* More informative

e Natural for humans



Learning Relative Attributes

For each attribute a,,,, open

Supervision is




Learning Relative Attributes
Image

, , T " features
Learn a scoring function 7, (T;) = w,,, x4

\

| earned
parameters

that best satisfies constraints:

V(i,j) € O : Wy T; > W, T;

V(i,§) € Sy : W) x; = W, T



Learning Relative Attributes

Max-margin learning to rank formulation

min (Sl +C (€ +303))

st wl (z; —x;) >1—&,;,9(i,7) € On

>

lwl, (z; — ;)| < 7ij,V(i,7) € S

§ij = 0575 =0
Based on [Joachims 2002]

>

v
Rank Margin

Image — Relative Attribute Score



Learning binary attributes v.s.
Learning relative attributes

Binary Attributes

¢ Classifier wy,

®. o=
. * @
¢ +
>
200060

Learn decision function
T
dp(x;) = wpx;

Relative Attributes

Learn ranking function:
— T
(X)) = winx,









Automatic Relative Image Desription

more dense than Highways, less dense than Forests



Automatic Relative Image Description

Binary (existing):
Not natural
Not open

Has perspective

Relative (ours):

More natural than insidecity
Less natural than highway

More open than street
Less open than coast

Has more perspective than highway
Has less perspective than insidecity

67



Automatic Relative Image Description

Binary (existing): & Relative (ours):

Not natural More natural than tallbuilding
Less natural than forest

Not open
More open than tallbuilding
Has perspective Less open than coast

Has more perspective than tallbuilding

68



Automatic Relative Image Description

Binary (existing):
Not Young
BushyEyebrows

RoundFace

Relative (ours):

More Young than CliveOwen
Less Young than ScarlettJohansson

More BushyEyebrows than ZacEfron
Less BushyEyebrows than AlexRodriguez

More RoundFace than CliveOwen
Less RoundFace than ZacEfron

69



Human Studies:
Which Image is Being Described?

Secret
Image

70



Human Studies:
Which Image is Being Descrlbed?

Binary: Smiling, Young Relative
Smiling Young More Smiling than Younger than

Not Young




Automatic Relative Image Description

—
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S
|

| I Binary
30! ____|Relative

18 subjects

60

Test cases: i

10 OSR, 20 PubFig

40|

207 /

% correct image in top choices
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# top choices
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Open Discussion



Relative Zero-shot Learning

Can predict new classes based on their relationships to
existing classes — without trainin%images

dS =Nl iy )

Age: cj]-l_gghkgiy_e>5ca rlett

Jared —Miley»

- -
-----------

- -
-----------

Infer image category using max-likelihood

74



Relative Zero-shot Learning

Training: Images from S seen categories and

Descriptions of U unseen categories

Age: Hugh >CI|ve>-ScarIett Jared > Miley

Smiling: Miley >Jared
Need not use all attributes, or all seen categories

Testing: Categorize image into one of S+U categories

75



Method

p(Object| X, S, A)
p(No object/ X..S. A)
p(X., S, A|Object) p(Object)
p(X, S, A|No object) p(No object)
p(X.S,A| 0) p(Object)
p(X, S, Alfyy) p(No object)

Model Structure —

Likelihood e

Z p(A|X. S, h,0) p X|S h.6) p(S|h. ) p(hl6)
hEH ~ v
Appearance Shape Rel. Scale Other




Method contd.

Appearance

Shape

Relative Scale

Occlusion

p(A|X,S.h,0) ﬁ(
Obg )

p(A[X,S, h,

p(X|S. h,6)

p=1

= G(X(h)|p. ) af

p(X/S. . 04,)

p(S|h, 6)

p(S[h,0y)

p(h|f)
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