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Problem: energy transport 
in molecular networks 
 
Model: HEOM 
 
Supervised Learning 
application 
 



Overview 
•  Research Goal: To understand energy transport in complex photosynthetic 

molecules and transfer the results to artificial systems 
 
•  Funding: 
    DFG-Realistic Simulations of Photoactive Systems on HPC Clusters with Many-Core Processors 2015-2017, 

 Prof. A. Reinefeld, Dr. T. Kramer, Dr. Y. Zelinskyy, M. Noack 
     H2020-Marie Curie IF-Control and optimization of energy flow in complex molecular networks,  
     April 2016-March 2018, Dr. M. Rodriguez 
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Photosynthesis in Green Sulfur Bacteria 

5 LI, FRIGAARD, BRYANT, Biochemistry 45 (2006)  

Antenna 
 
 few photons per day 
 
 
 
 
Light-harvesting 
complex 

Reaction 
Center 
 
 pico (10 -12 ) seconds  
time scale 



Optical probes are used to map the flow 
through the molecular network 

Dostal et al NATURE CHEMISTRY 8, July 2016 6 

2D spectra map 
population in 

network 
 
 
 
 



Theoretical results 

Tobias Kramer and Mirta Rodriguez, Scientific Reports Feb 2017 accepted 
https://arxiv.org/abs/1702.06948 7 



Our goal: Any size light harvesting complexes 

8  GD Scholes et al, Lessons from Nature about solar harvesting, Nature Chemistry 3, 763 (2011) 
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Model:  
 
Quantum transport 
across a network 
with strong 
environmental noise 



Model for energy transfer 

Adolphs & Renger: Biophys. J., 91, 2778 (2006) 10 

    Network        +      Environmental Noise 

site energies                                            hopping strengths 



Hierarchical Equations of Motion (HEOM) 

C. Kreisbeck, T. Kramer, M. Rodriguez, and B. Hein. Journal of Chemical Theory and Computation, 7:2166–2174, 2011  11 

Quantum dynamics described in terms of a hierarchy of time-dependent 
differential equations labeled with d-tuples  



Progress towards large system sizes 
•  HEOM performance model: FLOP ~16 d3 dk     Memory use ~ 2x2x8 dk d2  

                Computational intensity =d/2 FLOP/byte 
                d: system dimension         k: coupling to environment    

•  Scalable implementation of the HEOM 

12 Matthias Noack, Florian Wende, Klaus-Dieter Oertel, High Performance Parallelism Pearls,  Elservier 2015 



Machine Learning in Theoretical Physics 
−We need to generate the training data  
−We have very good theoretical models 
 
+Models are expensive ~  N6 scaling 
+It may save computational time for disorder/noise averaging 
+Picks interesting patterns, missed by the models or 
parametrisation 
+Neural Networks accurately describe non-linear processes (key 
in most Physics problems) 
+It may provide size-independent solutions 

13 
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Can Machine 
Learning predict 
Quantum behaviour 
in light harvesting 
complexes?  



Quantum behavior in photosynthesis 

             Engel et al NATURE 2007;  Collini et al NATURE 2010 15 

Gitt Panitchayangkoon et al. PNAS 2010;107:12766-12770 

©2010 by National Academy of Sciences 



Supervised learning of transfer 
probability within a molecular network 
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1)  Initialize the network in site 1 
 
3)  Measure the probabilities at end-site 
 
 
 
3)  Training set: 
 
(site energies, hopping strengths)à transfer probability 
 
104 random realizations of hopping and site energies 
 
Fixed temperature (100K), fixed environmental coupling 
  
 
 
H2020-MSCA-IF-2015-GA-707636 



Quantum vs. classical/thermal behaviour 
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•  classical thermalisation 

•  quantum 



Wolfram Mathematica 11 
Amazon MXNet Learning 
Framework 
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Supervised Learning is able to predict quantum 
behaviour in the network 
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- Physics model calculation 
° SL preliminary results 
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Thank you very much for 
your attention! 
 
 
 


