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Introduction Introduction

Introduction

@ Many (deterministic) physical processes are modeled by evolution
laws that incorporate not just energetics, but also dissipation, i.e. loss
of energy due to (say) frictional effects.

@ Also, many physical processes are subject to some randomness,
perhaps due to the presence of a heat bath, which supplies additional
(uncorrelated) energy to the process.

Question

How does a dissipative system (in particular, a rate-independent system)
behave when placed in contact with a heat bath?

To investigate this, we introduce a notion of thermalized gradient descent.
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Introduction Introduction

Introduction

@ This talk will concentrate on the case of one-homogeneous dissipation,
in which case the unthermalized dynamics are rate-independent.

@ In our analysis, the thermalized dynamics turn out to be a nonlinear
gradient descent; the thermalized dissipation potential is a
“smoothing out” of the original one.

@ As a toy model, consider a rough block sitting on a sandpaper table
and subject to forces (springs, external loads, & c.) weaker than the
frictional resistance of the sandpaper/block interface. Intuition
suggests that

@ at “zero temperature”, the block shouldn’t move at all;
@ at "positive temperature” (shaking the table), the block might move
— deterministically? randomly?

Koslowski/Ortiz/SULLIVAN/Theil (Caltech) Rate-Independent System in a Heat Bath EDS @ CMU 3/20



Introduction Gradient Descents

Gradient Descents

@ A gradient descent in R", say, is an evolutionary system described by
two potentials: an energetic potential £ and a dissipative potential V.

@ Typically, existence and uniqueness questions, as well as computation,
are addressed using the Moreau—Yosida (implicit Euler) incremental
formulation: given x; ~ x(t;), find z;41 ~ x(t;+1) to minimize

T
Wi-}—l: Y = E(ti—i-lyy) - E(tl,xl) + AtH_l‘I’ (At > . (MY)
i+1

® The idea now is to generate a thermalized gradient descent by seeking
densities that minimize a functional in which (MY) competes with a
entropy term.
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TGD — Generalities ~ Thermalized Gradient Descent

Thermalized Gradient Descent

@ Consider the following incremental problem for the PDF p(t,-) of X,
at discrete times 0 =tg <t1 < ... <ty =1T:

o Consider the “prior” density p; ~ p(t;,-).
o Find a new joint density p; i+1(-,-), with first marginal p;, that

minimizes
o [ [ Pisai+ eplogl,

where

A$¢+1 )

Vit1 (i, Tig1) = E(tipr, Tip1) — E(ti, xig1) + At ¥ (A
lip1

is the “cost” of changing from state x; to state x;41.
o Integrate/marginalize over the first slot of p; ;41(-,-) to get a new
density p;11 for time t;41.
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TGD — Generalities ~ Thermalized Gradient Descent

Thermalized Gradient Descent
pi(;)

0.
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TGD — Generalities ~ Thermalized Gradient Descent

Thermalized Gradient Descent

Lemma

Subject to mild regularity and growth conditions, the single-step
increments follow a Gibbs-Boltzmann-type distribution with respect to the
incremental cost function:

1
Pi+1(Tit1]ws) = Z(z;) P (= #ira (i, xig1)/€).

K3
Definition
On a partition P of [0,77], we will call the Markov chain X(*) so
generated the (discrete-time) thermalized gradient descent in E and V.

To do: take a continuous-time interpolation and examine the limit of
X®): Q% [0,T] — R™ as mesh(P) — 0.
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TGD — Generalities ~ Thermalized Gradient Descent

Thermalized Gradient Descent

@ For “nice” potentials E and 2-homogeneous ¥, the incremental
scheme makes sense. As the parition mesh tends to zero, the X
converges in law on path space to the solution Y of the It stochastic
gradient descent

(P)

Y(t) = —VE(t,Y(t) + Ve W(t);

i.e., the thermalized gradient descent scheme is a plausible model for
“linear kinetics + noise” .

@ The discrete-time scheme also makes sense for 1-homogeneous ¥ —
but what is the continuous-time limit as mesh(P) — 07
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TGD — 1-Homo.  Effective (Dual) Dissipation Potential

Consider a “nice” rate-independent system in R"™:

@ an energetic potential E: [0,7] x R™ — R — convex, time derivative
in W1 space derivative in C!;

@ a dissipation potential ¥: R™ — [0, 400) — homogeneous of degree
one and strictly convex (i.e. non-degenerate). ¥ is the convex
conjugate of the characteristic function of a convex compact set
& C (R™)* that has 0 € &, the elastic region:

U(v) =sup{{{,v) | L € &Y.
Study the process X(”) by studying its increments:

P P P
AXP) = xP) _ x(P),
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TGD - 1-Homo. Effective (Dual) Dissipation Potential

Definition
Define an effective dual dissipation potential

U*: (R")* — R U {400}
by
T*(0) = log/ exp (—((¢,z) + ¥(2))) dz.

n

Define the effective dissipation potential by convex conjugation:

U(v) = U™ (v) := sup { (£, v) — T*(0)]| £ € (R")*}.

Note that U is determined purely by the dissipation functional ¥ (or,
equivalently, the elastic region & C (R™)* associated to V).
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TGD - 1-Homo. Effective (Dual) Dissipation Potential

T w

The effective (dual) dissipation potential in dimension one for ¥ (x) = |xz|.
blows up like the logarithm of the distance to the yield surface 0&. ¥
is smooth and is asymptotic to ¥ at infinity.
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TGD — 1-Homo.  Effective (Dual) Dissipation Potential

@ The reason that W is so important is that the change of variables
Xit1 ~ AXiy1/€i11 yields (modulo higher-order error terms):

E[AXZ'+1‘XZ' = -Tz] ~ —€i+1DEJ* (DE(tZ-H,a:Z-));

Var [AXi-‘rl‘Xi = -Tz] ~ —5?+1 ‘D2\AI//* (DE(tZ‘_H', .Z‘Z))‘ K €it1-

@ Hence, it looks like the continuous-time limit with ;41 = At
should satisfy the deterministic ordinary differential equation

j(t) = —9DU* (DE(t,y(t)))

ie., DU V) = DE(t, y(t)).
(-52) =Dt
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TGD — 1-Homo.  Effective (Dual) Dissipation Potential

@ If W is the weighted ¢! norm W(z) := o1|z1| + ... + 0n|2s|, with
weights o; > 0, then (up to an additive constant)

U*(l) = — Zlog (02-2 — (¢ ei)2> .
i=1
@ If U is a multiple of the Euclidean norm, ¥(z) := o|z|2, 0 > 0, then

\T/*(g) = log /Sn_l % AR gn1 (w)

= _n—2|- L log (0 — [¢]3).
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TGD - 1-Homo. Convergence Result

Convergence Result

Theorem (Convergence to Nonlinear Gradient Descent)

If (t,z) — U*(DE(t,z)) is convex in x for each t € [0,T], then the
piecewise constant cadlag interpolation X(F): Q x [0,T] — R™ converges
in probability as mesh(P) — 0 to the solution of

DU (-@) = DE(t, y(t)).

More precisely, for any X\ > 0, as mesh(P) — 0,

P [ sup !X(P)(t) —y@t)], > A

€0 (mesh(P)l/Q) .
te[0,7

(If D?E = 0, then the order of convergence is O(mesh(P)).)
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TGD - 1-Homo. Convergence Result
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Andrade Creep  Andrade’s Creep Law

Andrade’s Creep Law

@ In 1910, Andrade reported that as a function of time, ¢, the creep
deformation, &, of soft metals at constant temperature and applied
stress can be described by a power law £(t) ~ t1/3.

@ Similar behavior has been observed in many classes of materials,
including non-crystalline materials.

@ Morally, macroscopic creep should be observed as a change in the
mean of the microscopic slip field.
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Andrade Creep  Phase Field Model

Phase Field Model

@ Consider the Koslowski—Cuitifo—Ortiz phase field model for a material
sample along a single slip plane, thought of as the unit torus, T2.

@ u(x) € R is the slip (in multiples of the Burgers vector) at = € T?.

@ Dissipation is concentrated over small discs centred on a (random) set
of obstacles, O.

@ KCO is a random, large finite-dimensional model, so we reduce by a
mean field approximation u ~~ £ € R.

@ The resulting model is of the form

Evr(t, &) = —L(t)E;  Yur(§) = ol¢].
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Andrade Creep  Convergence Result

Convergence Result

@ In this case, the effective dual dissipation potential for the mean field
is
Uip(6) = —log (02 — 2).

@ Under the assumption of linear strain hardening (i.e. 0 = 0p&) the
resulting effective ordinary differential equation is

20/
0(2)62 — 02 '

=

@ For constant # and constant 0 < £ < o, solutions grow in accord with
Andrade’s creep law, £(t) ~ t1/3.
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Conclusions / Future Work  Conclusions

Conclusions

@ The thermalized gradient descent scheme describes the effect of
adding It noise to a system with 2-homogeneous dissipation.

@ In the case of 1-homogeneous dissipation, neglecting inertia, the
scheme yields a deterministic gradient flow in an effective dissipation
potential W that is a nonlinear transformation (“smoothing-out”) of
the original dissipation potential .

@ This analysis can be used to derive Andrade's creep law.
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Conclusions / Future Work Future Work

Future Work

Extension to

@ second-order equations of motion (inertial effects, non-Markovian
processes)?

@ infinite-dimensional state spaces?

@ curved state spaces (manifolds)?
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