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Introduction Introduction

Introduction

Many (deterministic) physical processes are modeled by evolution
laws that incorporate not just energetics, but also dissipation, i.e. loss
of energy due to (say) frictional effects.

Also, many physical processes are subject to some randomness,
perhaps due to the presence of a heat bath, which supplies additional
(uncorrelated) energy to the process.

Question

How does a dissipative system (in particular, a rate-independent system)
behave when placed in contact with a heat bath?

To investigate this, we introduce a notion of thermalized gradient descent.
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Introduction Introduction

Introduction

This talk will concentrate on the case of one-homogeneous dissipation,
in which case the unthermalized dynamics are rate-independent.

In our analysis, the thermalized dynamics turn out to be a nonlinear
gradient descent; the thermalized dissipation potential is a
“smoothing out” of the original one.

As a toy model, consider a rough block sitting on a sandpaper table
and subject to forces (springs, external loads, & c.) weaker than the
frictional resistance of the sandpaper/block interface. Intuition
suggests that

at “zero temperature”, the block shouldn’t move at all;
at “positive temperature” (shaking the table), the block might move
— deterministically? randomly?
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Introduction Gradient Descents

Gradient Descents

A gradient descent in Rn, say, is an evolutionary system described by
two potentials: an energetic potential E and a dissipative potential Ψ.

Typically, existence and uniqueness questions, as well as computation,
are addressed using the Moreau–Yosida (implicit Euler) incremental
formulation: given xi ≈ x(ti), find xi+1 ≈ x(ti+1) to minimize

Wi+1 : y 7→ E(ti+1, y) − E(ti, xi) + ∆ti+1Ψ

(
y − xi

∆ti+1

)
. (MY)

The idea now is to generate a thermalized gradient descent by seeking
densities that minimize a functional in which (MY) competes with a
entropy term.

Koslowski/Ortiz/SULLIVAN/Theil (Caltech) Rate-Independent System in a Heat Bath EDS @ CMU 4 / 20



TGD – Generalities Thermalized Gradient Descent

Thermalized Gradient Descent

Consider the following incremental problem for the pdf ρ(t, ·) of Xt

at discrete times 0 = t0 < t1 < . . . < tN = T :

Consider the “prior” density ρi ≈ ρ(ti, ·).
Find a new joint density ρi,i+1(·, ·), with first marginal ρi, that
minimizes

ρ̃ 7→
∫∫ [

Wi+1ρ̃ + ερ̃ log ρ̃
]
,

where

Wi+1(xi, xi+1) = E(ti+1, xi+1) − E(ti, xi+1) + ∆ti+1Ψ

(
∆xi+1

∆ti+1

)

is the “cost” of changing from state xi to state xi+1.
Integrate/marginalize over the first slot of ρi,i+1(·, ·) to get a new
density ρi+1 for time ti+1.
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TGD – Generalities Thermalized Gradient Descent

Thermalized Gradient Descent
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TGD – Generalities Thermalized Gradient Descent

Thermalized Gradient Descent

Lemma

Subject to mild regularity and growth conditions, the single-step
increments follow a Gibbs-Boltzmann-type distribution with respect to the
incremental cost function:

ρi+1(xi+1|xi) =
1

Z(xi)
exp

(
− Wi+1(xi, xi+1)/ε

)
.

Definition

On a partition P of [0, T ], we will call the Markov chain X(P ) so
generated the (discrete-time) thermalized gradient descent in E and Ψ.

To do: take a continuous-time interpolation and examine the limit of
X(P ) : Ω × [0, T ] → Rn as mesh(P ) → 0.
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TGD – Generalities Thermalized Gradient Descent

Thermalized Gradient Descent

For “nice” potentials E and 2-homogeneous Ψ, the incremental
scheme makes sense. As the parition mesh tends to zero, the X(P )

converges in law on path space to the solution Y of the Itō stochastic
gradient descent

Ẏ (t) = −∇E(t, Y (t)) +
√

ε Ẇ (t);

i.e., the thermalized gradient descent scheme is a plausible model for
“linear kinetics + noise”.

The discrete-time scheme also makes sense for 1-homogeneous Ψ —
but what is the continuous-time limit as mesh(P ) → 0?
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TGD – 1-Homo. Effective (Dual) Dissipation Potential

Consider a “nice” rate-independent system in Rn:

an energetic potential E : [0, T ] × Rn → R — convex, time derivative
in W 1,∞, space derivative in C1;

a dissipation potential Ψ: Rn → [0,+∞) — homogeneous of degree
one and strictly convex (i.e. non-degenerate). Ψ is the convex
conjugate of the characteristic function of a convex compact set
E ( (Rn)∗ that has 0 ∈ E̊ , the elastic region:

Ψ(v) = sup{〈ℓ, v〉 | ℓ ∈ E }.

Study the process X(P ) by studying its increments:

∆X
(P )
i := X

(P )
i − X

(P )
i−1.
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TGD – 1-Homo. Effective (Dual) Dissipation Potential

Definition

Define an effective dual dissipation potential

Ψ̃⋆ : (Rn)∗ → R ∪ {+∞}

by

Ψ̃⋆(ℓ) := log

∫

Rn

exp
(
−

(
〈ℓ, z〉 + Ψ(z)

))
dz.

Define the effective dissipation potential by convex conjugation:

Ψ̃(v) = Ψ̃⋆⋆(v) := sup
{
〈ℓ, v〉 − Ψ̃⋆(ℓ)

∣∣ ℓ ∈ (Rn)∗
}
.

Note that Ψ̃ is determined purely by the dissipation functional Ψ (or,
equivalently, the elastic region E ( (Rn)∗ associated to Ψ).
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TGD – 1-Homo. Effective (Dual) Dissipation Potential

Ψ̃⋆(ℓ) := log

∫

Rn

exp
(
−

(
〈ℓ, z〉 + Ψ(z)

))
dz.

Ψ̃(v) := sup
ℓ

[
〈ℓ, v〉 − Ψ̃⋆(ℓ)

]
.
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The effective (dual) dissipation potential in dimension one for Ψ(x) = |x|.
Ψ̃⋆ blows up like the logarithm of the distance to the yield surface ∂E . Ψ̃
is smooth and is asymptotic to Ψ at infinity.
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TGD – 1-Homo. Effective (Dual) Dissipation Potential

The reason that Ψ̃ is so important is that the change of variables
Xi+1  ∆Xi+1/εi+1 yields (modulo higher-order error terms):

E
[
∆Xi+1

∣∣Xi = xi

]
≈ −εi+1DΨ̃⋆

(
DE(ti+i, xi)

)
;

Var
[
∆Xi+1

∣∣Xi = xi

]
≈ −ε2

i+1

∣∣∣D2Ψ̃⋆
(
DE(ti+i, xi)

)∣∣∣ ≪ εi+1.

Hence, it looks like the continuous-time limit with εi+1 = θ∆ti+1

should satisfy the deterministic ordinary differential equation

ẏ(t) = −θDΨ̃⋆
(
DE(t, y(t))

)

i.e., DΨ̃

(
− ẏ(t)

θ

)
= DE(t, y(t)).
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TGD – 1-Homo. Effective (Dual) Dissipation Potential

If Ψ is the weighted ℓ1 norm Ψ(z) := σ1|z1| + . . . + σn|zn|, with
weights σi > 0, then (up to an additive constant)

Ψ̃⋆(ℓ) = −
n∑

i=1

log
(
σ2

i −
(
ℓ · ei

)2
)

.

If Ψ is a multiple of the Euclidean norm, Ψ(z) := σ|z|2, σ > 0, then

Ψ̃⋆(ℓ) = log

∫

Sn−1

(n − 1)!
(
ℓ · ω + σ

)
−n dHn−1⌊Sn−1(ω)

= −n + 1

2
log

(
σ2 − |ℓ|22

)
.
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TGD – 1-Homo. Convergence Result

Convergence Result

Theorem (Convergence to Nonlinear Gradient Descent)

If (t, x) 7→ Ψ̃⋆(DE(t, x)) is convex in x for each t ∈ [0, T ], then the
piecewise constant càdlàg interpolation X̄(P ) : Ω × [0, T ] → Rn converges
in probability as mesh(P ) → 0 to the solution of

DΨ̃

(
− ẏ(t)

θ

)
= DE(t, y(t)).

More precisely, for any λ > 0, as mesh(P ) → 0,

P

[
sup

t∈[0,T ]

∣∣X̄(P )(t) − y(t)
∣∣
2
≥ λ

]
∈ O

(
mesh(P )1/2

)
.

(If D2E ≡ 0, then the order of convergence is O(mesh(P )).)
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TGD – 1-Homo. Convergence Result

0.2 0.4 0.6 0.8 1 1.2 1.4

-0.6

-0.4

-0.2

0.2

0.4

0.6

t

y(t) z(t)

θ = 1

Indicated in green is the frontier of the stable region,

S(t) := {x ∈ Rn | −DE(t, x) ∈ E }.Koslowski/Ortiz/SULLIVAN/Theil (Caltech) Rate-Independent System in a Heat Bath EDS @ CMU 15 / 20



TGD – 1-Homo. Convergence Result

0.2 0.4 0.6 0.8 1 1.2 1.4

-0.6

-0.4

-0.2

0.2

0.4

0.6

t

y(t) z(t)

θ =
1

10
Indicated in green is the frontier of the stable region,

S(t) := {x ∈ Rn | −DE(t, x) ∈ E }.Koslowski/Ortiz/SULLIVAN/Theil (Caltech) Rate-Independent System in a Heat Bath EDS @ CMU 15 / 20



Andrade Creep Andrade’s Creep Law

Andrade’s Creep Law

In 1910, Andrade reported that as a function of time, t, the creep
deformation, ξ, of soft metals at constant temperature and applied
stress can be described by a power law ξ(t) ∼ t1/3.

Similar behavior has been observed in many classes of materials,
including non-crystalline materials.

Morally, macroscopic creep should be observed as a change in the
mean of the microscopic slip field.
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Andrade Creep Phase Field Model

Phase Field Model

Consider the Koslowski–Cuitiño–Ortiz phase field model for a material
sample along a single slip plane, thought of as the unit torus, T2.

u(x) ∈ R is the slip (in multiples of the Burgers vector) at x ∈ T2.

Dissipation is concentrated over small discs centred on a (random) set
of obstacles, O.

KCO is a random, large finite-dimensional model, so we reduce by a
mean field approximation u ξ ∈ R.

The resulting model is of the form

EMF(t, ξ) = −ℓ(t)ξ; ΨMF(ξ) = σ|ξ|.
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Andrade Creep Convergence Result

Convergence Result

In this case, the effective dual dissipation potential for the mean field
is

Ψ̃⋆
MF(ℓ) = − log

(
σ2 − ℓ2

)
.

Under the assumption of linear strain hardening (i.e. σ = σ0ξ) the
resulting effective ordinary differential equation is

ξ̇ =
2θℓ

σ2
0ξ

2 − ℓ2
.

For constant θ and constant 0 < ℓ ≪ σ, solutions grow in accord with
Andrade’s creep law, ξ(t) ∼ t1/3.
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Conclusions / Future Work Conclusions

Conclusions

The thermalized gradient descent scheme describes the effect of
adding Itō noise to a system with 2-homogeneous dissipation.

In the case of 1-homogeneous dissipation, neglecting inertia, the
scheme yields a deterministic gradient flow in an effective dissipation
potential Ψ̃ that is a nonlinear transformation (“smoothing-out”) of
the original dissipation potential Ψ.

This analysis can be used to derive Andrade’s creep law.
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Conclusions / Future Work Future Work

Future Work

Extension to

second-order equations of motion (inertial effects, non-Markovian
processes)?

infinite-dimensional state spaces?

curved state spaces (manifolds)?
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