Uncertainty quantification via codimension one domain partitioning and a new concentration inequality

Tim Sullivan, Ufuk Topcu, Mike McKerns & Houman Owhadi **tjs@**..., utopcu@..., mmckerns@...& owhadi@caltech.edu

California Institute of Technology, Pasadena, California 91125, USA

SIAM 2010 — Minisymposium on Numerical Methods for Stochastic Computation and Uncertainty Quantification **Pittsburgh, Pennsylvania, USA** 12–16 July 2010

Outline

Introduction

- Aim: Certification
- McDiarmid's Inequality
- 2 McDiarmid's Inequality with Partitioning
 - Partitioning
 - Error Bounds and Convergence
 - Codimension-One Recursive Partitioning Using Subdiameters
 - Hypervelocity Impact Example
- Confidence Bounds and Half-Spaces
 - Empirical Bounds
 - Confidence Bounds using Half-Spaces
- Conclusions and Outlook
 - Conclusions
 - Outlook
 - Bibliography & Acknowledgements

Introduction: Certification

Aim

We approach uncertainty quantification from the point of view of the certification problem: we want good (rigorous and sharp) upper bounds on

$$\mu[f(X) \le \theta],$$

where

- $f: \mathcal{X} \to \mathbb{R}$ is a system / response function of interest;
- $X: \Omega \to \mathcal{X}$ represents the random inputs of f, with law μ ;
- $\theta \in \mathbb{R}$ is some threshold for failure.

We do this so that we (hopefully) rigorously guarantee that

 $\mu[f(X) \leq \theta] \leq \epsilon,$

where $\epsilon \in [0,1]$ is a maximum acceptable probability of failure.

Introduction: Monte Carlo

Why not simply certify using Monte Carlo sampling?

Quantitative Reasons

For systems with small failure probability p, certification will take of the order of $p^{-2} \log p^{-1}$ samples (evaluations of f), which may be more expensive than the available resources permit.

Qualitative Reasons

Monte Carlo certification does not distinguish between the aleatoric uncertainty in the inputs X and the input parameter sensitivity of f. In the language of QMU (quantification of margins and uncertainties), it may be desirable to quantify margins (*e.g.* mean performance) and uncertainties (system sensitivity) separately.

McDiarmid's Inequality

Definition

For any function $f: \mathcal{X} = \mathcal{X}_1 \times \cdots \times \mathcal{X}_n \to \mathbb{R}$ and $i \in \{1, \ldots, n\}$, the *i*th McDiarmid subdiameter of f is defined by

$$\mathcal{D}_i[f] := \sup \left\{ |f(x) - f(x')| \, \big| \, x_j = x'_j \in \mathcal{X}_j \text{ for } j \neq i \right\};$$

the McDiarmid diameter of f is $\mathcal{D}[f] := \left(\sum_{i=1}^{n} \mathcal{D}_{i}[f]^{2}\right)^{1/2}$.

Theorem (McDiarmid 1989)

For every product measure μ on $\mathcal{X} = \mathcal{X}_1 \times \cdots \times \mathcal{X}_n$ such that $\mathbb{E}[|f|]$ is finite, and for every r > 0,

$$\mu[f - \mathbb{E}[f] \ge r]$$
 and $\mu[f - \mathbb{E}[f] \ge -r] \le \exp\left(-\frac{2r^2}{\mathcal{D}[f]^2}\right)$

Certification using McDiarmid's Inequality

McDiarmid's inequality implies that

$$\mu[f \le \theta] \le \exp\left(-\frac{2(\mathbb{E}[f] - \theta)_+^2}{\mathcal{D}[f]^2}
ight).$$

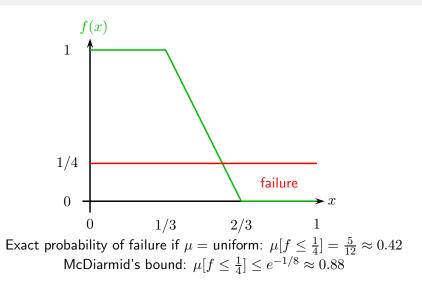
This provides a rigorous certification criterion in terms of the performance margin $(\mathbb{E}[f] - \theta)_+$ and the McDiarmid diameter $\mathcal{D}[f]$: the system is certified as safe if

$$\exp\left(-\frac{2(\mathbb{E}[f]-\theta)_+^2}{\mathcal{D}[f]^2}\right) \le \epsilon.$$

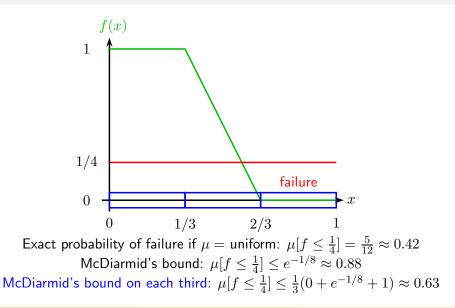
Application of McDiarmid's inequality is not an ideal method:

- determination of $\mathcal{D}[f]$ requires a (potentially expensive) global optimization;
- $\mathcal{D}[f]$ is a global sensitivity measure because of this, McDiarmid's inequality is often not sharp.

McDiarmid's Inequality is Not Sharp



McDiarmid's Inequality is Not Sharp



McDiarmid's Inequality with Partitioning

Let \mathcal{P} be a finite or countable partition of \mathcal{X} into pairwise-disjoint measurable rectangles, and let μ be any product measure on \mathcal{X} for which $\mathbb{E}_{\mu}[|f|]$ is finite. Then

$$\mu[f \le \theta] = \sum_{A \in \mathcal{P}} \mu([f \le \theta] \cap A)$$
$$= \sum_{A \in \mathcal{P}} \mu(A)\mu[f \le \theta|A]$$
$$\le \sum_{A \in \mathcal{P}} \mu(A) \exp\left(-\frac{2(\mathbb{E}[f|A] - \theta)_+^2}{\mathcal{D}[f|A]^2}\right)$$
$$=: \overline{\mu_{\mathcal{P}}}[f \le \theta].$$

Error Bound

Proposition (Error bound)

Let $f: \mathcal{X} \to \mathbb{R}$ be measurable and let \mathcal{P} be a partition of \mathcal{X} . Then, for every $\varepsilon > 0$, and for all sufficiently small $\delta > 0$,

$$0 \leq \overline{\mu_{\mathcal{P}}}[f \leq \theta] - \mu[f \leq \theta] < \varepsilon + \sup_{A \in \mathcal{P}_{\delta}} \exp\left(-\frac{2\left(\delta - \sum_{j=1}^{n} \mathcal{D}_{j}[f|A]\right)_{+}^{2}}{\mathcal{D}[f|A]^{2}}\right),$$

where

$$\mathcal{P}_{\delta} := \{ A \in \mathcal{P} \mid f(A) \cap (\theta + \delta, +\infty) \neq \emptyset \}.$$

I.e. the amount by which $\overline{\mu_{\mathcal{P}}}[f \leq \theta]$ is an over-estimate of the probability of failure is controlled by the McDiarmid subdiameters (*not* the metric diameter) of those $A \in \mathcal{P}$ on which f exceeds the threshold for success by more than δ somewhere in A.

Partitioning Algorithms

For simplicity, restrict attention to parameter spaces that are compact boxes in \mathbb{R}^n :

$$\mathcal{X} = [a_1, b_1] \times \cdots \times [a_n, b_n].$$

How can one *efficiently* construct a partition \mathcal{P} of \mathcal{X} for which $\overline{\mu_{\mathcal{P}}}[f \leq \theta]$ is nearly $\mu[f \leq \theta]$?

Naïve Method

Construct a sequence $(\mathcal{P}(k))_{k\in\mathbb{N}}$ by bisecting each box $A \in \mathcal{P}(k)$ in each of the *n* coordinate directions to produce the boxes of $\mathcal{P}(k+1)$.

The naïve method is strongly affected by the curse of dimension: there are 2^n new boxes with each iteration. Therefore, we propose an algorithm in which the McDiarmid subdiameters are used as sensitivity indices to guide a codimension-one recursive partitioning scheme.

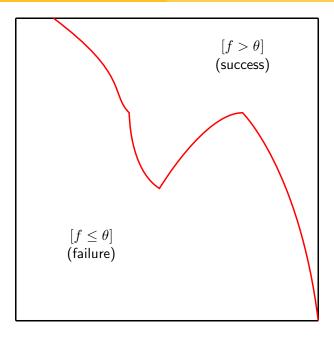
Codimension-One Recursive Partitioning Using Subdiameters

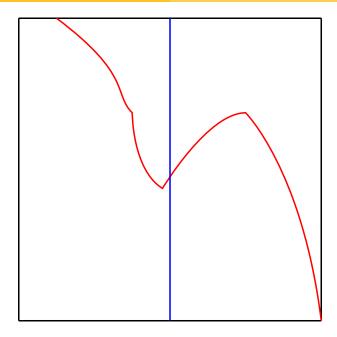
Recursively define a sequence of partitions $(\mathcal{P}(k))_{k\in\mathbb{N}}$ as follows: for each $A\in\mathcal{P}(k)$,

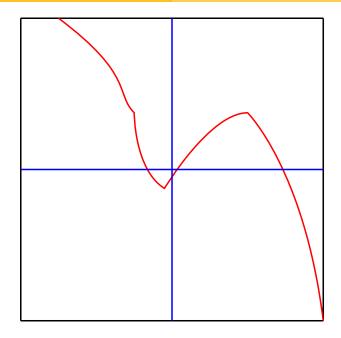
- if $A \in \mathcal{P}(k)$ satisfies $\inf_{x \in A} f(x) > \theta$ (*i.e.* f always succeeds on A), then include A in $\mathcal{P}(k+1)$ as it is;
- ② if A ∈ P(k) satisfies sup_{x∈A} f(x) ≤ θ (*i.e.* f always fails on A), then include A in P(k + 1) as it is;

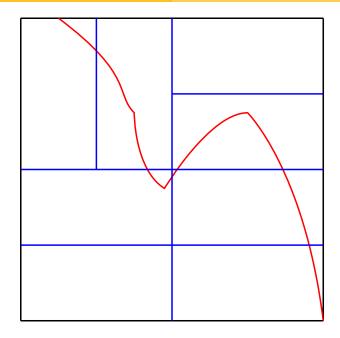
otherwise,

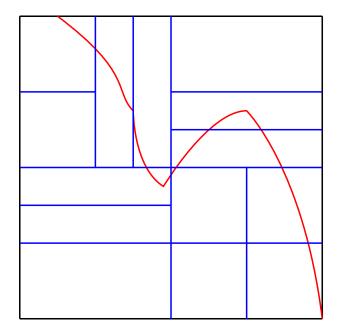
- determine $j \in \{1, ..., n\}$ such that $\mathcal{D}_j[f|A]$ is maximal (choose one such j arbitrarily if there are multiple maximizers);
- **2** set $c(A) := \int_A x \, \mathrm{d}x$, the geometric centre of A;
- Solution bisect A by a hyperplane of codimension one (*i.e.* of dimension n-1) through c(A) and normal to \hat{e}_j , the unit vector in the j^{th} coordinate direction;
- include in $\mathcal{P}(k+1)$ the two subsets of A so generated, but not the original set A; the two new sets are called the *children* of A.

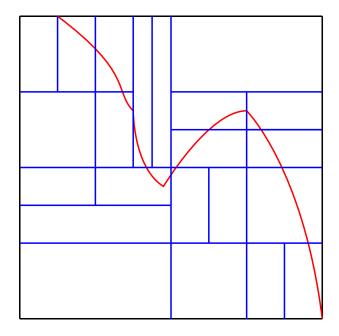


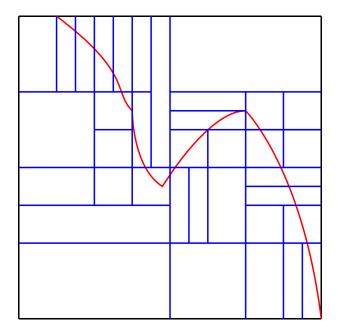












CORPUS Convergence Theorem

Theorem

For every bounded $\mathcal{X} = \mathcal{X}_1 \times \cdots \times \mathcal{X}_n \subseteq \mathbb{R}^n$ and every uniformly continuous $f: \mathcal{X} \to \mathbb{R}$, the CORPUS algorithm generates a sequence of partitions $(\mathcal{P}(k))_{k \in \mathbb{N}}$ such that

$$\mu[f \le \theta] = \lim_{k \to \infty} \overline{\mu_{\mathcal{P}(k)}}[f \le \theta].$$

Sketch of Proof

Need to show that for any initial box A, every generation-g child A' of A with g sufficiently large must satisfy one of the following:

$$\mathcal{D}_j[f|A'] \leq rac{1}{2}\mathcal{D}_j[f|A]$$
 for all $j=1,\ldots,n,$ or

 $\sup_{x\in A'}f(x)\leq \theta \text{ or } \inf_{x\in A'}f(x)>\theta.$

Hypervelocity Impact

Figure: Caltech's Small Particle Hypervelocity Impact Range (SPHIR): a two-stage light gas gun that launches 1-50 mg projectiles at speeds of $2-10 \text{ km} \cdot \text{s}^{-1}$.

Sullivan & al. (Caltech)

UQ via Codimension 1 Partitioning

Hypervelocity Impact

Figure: Caltech's Small Particle Hypervelocity Impact Range (SPHIR): a two-stage light gas gun that launches 1-50 mg projectiles at speeds of $2-10 \text{ km} \cdot \text{s}^{-1}$.

Sullivan & al. (Caltech)

UQ via Codimension 1 Partitioning

Hypervelocity Impact: Surrogate Model

Experimentally-derived deterministic surrogate model for the perforation area (in mm^2):

- plate thickness $h \in [1.52, 2.67] \,\mathrm{mm}$;
- impact obliquity $\alpha \in [0, \frac{\pi}{6}]$;
- impact speed $v \in [2.1, 2.8] \,\mathrm{km} \cdot \mathrm{s}^{-1}$.

$$f(h,\alpha,v) := 10.396 \left(\left(\frac{h}{1.778}\right)^{0.476} (\cos\alpha)^{1.028} \tanh\left(\frac{v}{v_{\rm bl}} - 1\right) \right)_{+}^{0.468}$$

The quantity $v_{\rm bl}(h,\alpha)$ given by

$$v_{\rm bl}(h,\alpha) := 0.579 \left(\frac{h}{(\cos \alpha)^{0.448}}\right)^{1.400}$$

is called the ballistic limit, the impact speed below which no perforation occurs. The failure event is non-perforation, *i.e.* $[f = 0] \equiv [f \leq 0]$.

Hypervelocity Impact: Effect of Partitioning

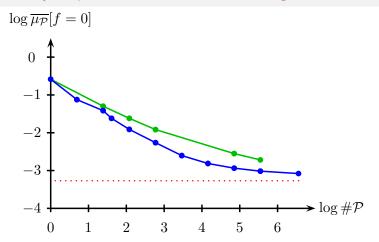


Figure: In blue, the $\overline{\mu_{\mathcal{P}}}$ upper bound on the failure probability versus the number of boxes $\#\mathcal{P}$ used by the CORPUS algorithm. In green, the corresponding upper bound obtained if all boxes are subdivided, instead of just those on which f both succeeds and fails. In red, the exact probability of failure.

Sullivan & al. (Caltech)

UQ via Codimension 1 Partitioning

SIAM UQ 2010 16 / 30

Confidence in Empirical Bounds

Suppose that we are given a partition $\mathcal{P} = A_1 \uplus \cdots \uplus A_K$ for which we know $\mu(A_k)$ and $\mathcal{D}[f|A_k]$ for each $k = 1, \ldots, K$, but our knowledge of the local mean performance $\mathbb{E}[f|A_k]$ comes from m_k empirical samples:

$$\mathbb{E}[f|A_k] \rightsquigarrow \langle f|A_k \rangle := \frac{1}{m_k} \sum_{j=1}^{m_k} f(X^{(j)}).$$

It is not true that

$$\mu[f \le \theta] \le \sum_{k=1}^{K} \mu(A_k) \exp\left(-\frac{2(\langle f|A_k\rangle - \theta)_+^2}{\mathcal{D}[f|A_k]^2}\right);$$

however, it may be true, with acceptably high probability, that

$$\mu[f \le \theta] \le \sum_{k=1}^{K} \mu(A_k) \exp\left(-\frac{2(\langle f|A_k\rangle - \alpha_k - \theta)_+^2}{\mathcal{D}[f|A_k]^2}\right),$$

where $\alpha_k > 0$ are suitable margin hits.

McDiarmid's Inequality with an Empirical Mean

Theorem

Let $X^{(1)}, \ldots, X^{(m)}$ be m independent μ -distributed samples of $\mathcal X$ and let

$$\langle f \rangle := \frac{1}{m} \sum_{j=1}^{m} f(X^{(j)})$$

be the associated empirical mean of f. Then, for every $\varepsilon > 0$, with μ -probability at least $1 - \varepsilon$ on the m samples,

$$\mu[f \le \theta] \le \exp\left(-\frac{2(\langle f \rangle - \alpha - \theta)_+^2}{\mathcal{D}[f]^2}
ight),$$

where $\alpha := \mathcal{D}[f]\sqrt{\frac{\log(1/\varepsilon)}{2m}}.$

Partitioned McDiarmid's Inequality with Empirical Means

Given
$$lpha = (lpha_1, \dots, lpha_K) \in \mathbb{R}^K$$
, let

$$H_{\alpha}(y) := \sum_{k=1}^{K} \mu(A_k) \exp\left(-\frac{2(\mathbb{E}[f|A_k] - y_k - \alpha_k - \theta)_+^2)}{\mathcal{D}[f|A_k]^2}\right).$$

We seek a bound

$$\mu \Big[H_{\alpha}(Y) \leq \underbrace{H_{\alpha}(-\alpha)}_{\equiv \overline{\mu}\overline{\rho}[f \leq \theta]} \Big] \leq \ree{1.5mu}$$

where

$$Y_k := \mathbb{E}[f|A_k] - \langle f|A_k \rangle.$$

Note that each Y_k is a real-valued random variable that concentrates about its mean, 0: for any r > 0,

$$\mu[Y_k \ge r] \text{ and } \mu[Y_k \le -r] \le \exp\left(-\frac{2m_k r^2}{\mathcal{D}[f|A_k]^2}
ight).$$

Level Sets of H_{α}

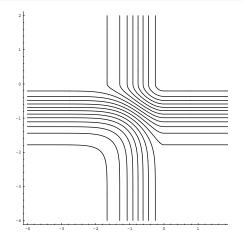


Figure: 20 equally-spaced contours of H_{α} , which increases from 0 in the bottom-left to 1 in the top-right. H_{α} is increasing and sublevels of small enough values are convex.

Sullivan & al. (Caltech)

UQ via Codimension 1 Partitioning

Bounds Using Orthants

Since H_{α} is increasing in each of its K arguments and the K random variables $\langle f | A_k \rangle$ are independent, one bound on $\mu[H_{\alpha}(Y) \leq H_{\alpha}(-\alpha)]$ is provided as follows: fix $\varepsilon > 0$, choose any $\varepsilon_1, \ldots, \varepsilon_K > 0$ such that $1 - \varepsilon = \prod_{k=1}^{K} (1 - \varepsilon_k)$, and set

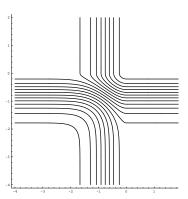
$$\alpha_k := \mathcal{D}[f|A_k] \sqrt{\frac{\log(1/\varepsilon_k)}{2m_k}}.$$

Then

$$\mu \Big[H_{\alpha}(Y) \ge H_{\alpha}(-\alpha) \Big] \ge \prod_{k=1}^{K} \mu [Y_k \ge -\alpha_k]$$
$$\ge \prod_{k=1}^{K} (1 - \varepsilon_k)$$
$$= 1 - \varepsilon.$$

Sullivan & al. (Caltech)

The Problem with Orthants...



- The problem with the bound on the previous slide is that for even moderately large K, ε_k must be tiny in order to make ε small enough. It then follows that m_k must be large in order to make the margin hit α_k acceptably small.
- Geometrically, this can be seen as a consequence of using *K*-dimensional orthants to estimate the measure of a set: viewed from their vertices, high-dimensional orthants look very "narrow".
- Half-spaces are much better, dimensionally speaking, since they always fill half the "field of view".

A Bound on the Measure of a Half-Space

Denote by $\mathbb{H}_{p,\nu}$ the closed half-space in \mathbb{R}^K that has p on its boundary and ν as an outward-pointing normal:

$$\mathbb{H}_{p,\nu} = \left\{ y \in \mathbb{R}^K \, \big| \, \nu \cdot y \le \nu \cdot p \right\}.$$

Since $\mathbb{E}[\nu \cdot Y] = 0$, application of McDiarmid's inequality yields that

$$\mu[Y \in \mathbb{H}_{p,\nu}] \le \exp\left(-2(\nu \cdot p)_{-}^2 / \sum_{k=1}^{K} \frac{|\nu_k|^2}{m_k} \mathcal{D}[f|A_k]^2\right).$$

Hence, for any $S \subseteq \mathbb{R}^K$,

$$\mu[Y \in S] \le \inf \left\{ \exp \left(-\frac{2(\nu \cdot p)_{-}^2}{\sum_{k=1}^K \frac{|\nu_k|^2}{m_k} \mathcal{D}[f|A_k]^2} \right) \, \middle| \begin{array}{l} p \in \mathbb{R}^K \text{ and } \nu \in \mathbb{R}^K \\ \text{such that } S \subseteq \mathbb{H}_{p,\nu} \end{array} \right\}$$

Consequences for H_{α}

Suppose it is known a priori that $H_{\alpha}(-\alpha)$ is small enough that the sublevel set $H_{\alpha}^{-1}([0, H_{\alpha}(-\alpha)])$ is convex. Then, applying the inequality from the previous slide with $p = -\alpha$ and $\nu = \nabla H_{\alpha}(-\alpha)$ yields that

$$\mu \Big[H_{\alpha}(Y) \le H_{\alpha}(-\alpha) \Big] \le \exp\left(-\frac{2(\nabla H_{\alpha}(-\alpha) \cdot \alpha)_{+}^{2}}{\sum_{k=1}^{K} \frac{|\partial_{k} H_{\alpha}(-\alpha)|^{2}}{m_{k}} \mathcal{D}[f|A_{k}]^{2}} \right)$$

Note:

$$\partial_k H_\alpha(-\alpha) = \frac{4\mu(A_k)(\mathbb{E}[f|A_k] - \theta)_+}{\mathcal{D}[f|A_k]^2} \exp\left(-\frac{2(\mathbb{E}[f|A_k] - \theta)_+^2}{\mathcal{D}[f|A_k]^2}\right) \ge 0.$$

Note also that, by assumption, $\mathbb{E}[f|A_k]$ is unknown, so in practice one takes a supremum over known ranges of values for $\mathbb{E}[f|A_k]$.

$K = 2, m_1 = m_2 = 5$	$\varepsilon_1 = \varepsilon_2 = 1\%$		
Upper bounds on the probability of failure $(i.e. \text{ non-perforation}, [f = 0])$			
If inputs uniformly dist.	3.7%		
Exact local means: $\overline{\mu_{\mathcal{P}}}[f=0]$	33%		
Empirical local means: $H_{\alpha}(Y)$	54%		
Confidence levels (<i>i.e.</i> upper bounds on $\mu[H_{\alpha}(Y) \leq \overline{\mu_{\mathcal{P}}}[f=0]]$)			
Orthant method	2%		
$\begin{array}{c} \mbox{Half-space method} \\ \mbox{Means known exactly} \\ \mbox{Means known to within } \pm 1{\rm mm}^2 \\ \mbox{Means known to within } \pm 5{\rm mm}^2 \end{array}$	$0.9\% \\ 0.9\% \\ 1.0\%$		

$K = 2, m_1 = m_2 = 5$	$\varepsilon_1 = \varepsilon_2 = 1\%$	$\varepsilon_1 = \varepsilon_2 = 0.1\%$	
Upper bounds on the probability of failure (<i>i.e.</i> non-perforation, $[f = 0]$)			
If inputs uniformly dist.	3.7%		
Exact local means: $\overline{\mu_{\mathcal{P}}}[f=0]$	33%		
Empirical local means: $H_{\alpha}(Y)$	54%	58%	
Confidence levels (<i>i.e.</i> upper bounds on $\mu[H_{\alpha}(Y) \leq \overline{\mu_{\mathcal{P}}}[f=0]]$)			
Orthant method	2%	0.20%	
$\begin{array}{c} \mbox{Half-space method} \\ \mbox{Means known exactly} \\ \mbox{Means known to within } \pm 1{\rm mm}^2 \\ \mbox{Means known to within } \pm 5{\rm mm}^2 \end{array}$	$0.9\%\ 0.9\%\ 1.0\%$	$\begin{array}{c} 0.09\% \\ 0.09\% \\ 0.10\% \end{array}$	

Scaling of Confidence Levels with K

This example leads us to consider the very different scaling properties of the orthant and half-space methods, provided sample sizes m_1, \ldots, m_K are chosen appropriately.

Proposition

Suppose that the same level of confidence $1 - \varepsilon_0$ is required for each local mean $\mathbb{E}[f|A_k]$, $k = 1, \ldots, K$. Choose sample sizes m_k such that

 $\sqrt{m_k} \propto \partial_k H_\alpha(-\alpha) \mathcal{D}[f|A_k].$

Then the confidence levels for H_{α} are given by:

half-space method: $\mu [H_{\alpha}(Y) \ge H_{\alpha}(-\alpha)] \ge 1 - \varepsilon_0^K;$ orthant method: $\mu [H_{\alpha}(Y) \ge H_{\alpha}(-\alpha)] \ge (1 - \varepsilon_0)^K.$

Half-Space / Chernoff Concentration

- The use of half-spaces exploits the fact that, in a probability normed vector space \mathcal{V} , a convex set C that does not contain the centre of mass has small measure exponentially small with respect to its distance from the centre of mass.
- Hence, a quasiconvex function f on \mathcal{V} is unlikely to assume values below its value at the centre of mass.
- This differs from concentration/deviation results in the literature in two ways:
 - there are no smoothness assumptions on f;
 - the result is a one-sided concentration about the value of f at the centre of mass, not about $\mathbb{E}[f]$.
- We believe that results of this type indicate a deeper connection between concentration-of-measure phenomena and large deviations principles.

Conclusions

In situations where failure is a rare event but McDiarmid diameters can be computed:

- McDiarmid's inequality offers a rigorous upper bound on the probability of failure (certification criterion);
- partitioning offers a way to obtain arbitrarily sharp upper bounds on the probability of failure, at the cost of further diameter calculations;
- this can be done in ways that avoid the naïve curse of dimension;
- half-space methods provide confidence bounds in which high-cardinality partitions are a help, not a hindrance.

Outlook

- It is not necessary to assume that the partition elements are rectangles: in the non-rectangular situation, resort to martingale inequalities.
- The μ and f to which CORPUS is applied may be surrogates for the real μ' and f' on which the probability of failure upper bound will be calculated (perhaps using sampling) can the approximation error be controlled?
- Does it make sense to ask for the "optimal" partition of a given cardinality? of a given mesh size?
- How can these methods be extended to handle noisy / imperfectly observed response functions *f*?

Bibliography & Acknowledgements

- A. A. Kidane, A. Lashgari, B. Li, M. McKerns, M. Ortiz, G. Ravichandran, H. Owhadi, T. J. Sullivan. "Rigorous Model-Based Uncertainty Quantification with Application to Terminal Ballistics." In preparation.
- C. McDiarmid. "On the method of bounded differences." In *Surveys in Combinatorics, 1989*, vol. 141 of *LMS Lecture Note Series*, 148–188. 1989.
- T. J. Sullivan, U. Topcu, M. McKerns & H. Owhadi. "Uncertainty quantification via codimension-one partitioning." Submitted to *Int. J. Num. Meth. Eng.*
- T. J. Sullivan & H. Owhadi. "Concentration inequalities for functions of several variables using half-space methods." In preparation.

Portions of this work were developed as part of the Predictive Science Academic Alliance Program, funded by United States Department of Energy contract number DE-FC52-08NA28613.