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Introduction Aim

Introduction: Aim

Aim

We approach uncertainty quantification from the point of view of the
certification problem: we want good (rigorous and sharp) upper bounds on

µ[f(X) ≤ θ],

where

f : X → R is a system / response function of interest;

X : Ω → X represents the random inputs of f , with law µ;

θ ∈ R is some threshold for failure.

We do this so that we (hopefully) rigorously guarantee that

µ[f(X) ≤ θ] ≤ ǫ,

where ǫ ∈ [0, 1] is a maximum acceptable probability of failure.
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Introduction Aim

Introduction: Monte Carlo

Why not simply certify using Monte Carlo sampling?

Quantitative Reasons

For systems with small failure probability p, certification will take of the
order of p−2 log p−1 samples (evaluations of f), which may be more
expensive than the available resources permit.

Qualitative Reasons

Monte Carlo certification does not distinguish between the aleatoric
uncertainty in the inputs X and the input parameter sensitivity of f . In
the language of QMU (quantification of margins and uncertainties), it may
be desirable to quantify margins (e.g. mean performance) and
uncertainties (system sensitivity) separately.
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Introduction McDiarmid’s Inequality

McDiarmid Diameters

Definition

For any function f : X = X1 × · · · × Xn → R and i ∈ {1, . . . , n}, the ith

McDiarmid subdiameter of f is defined by

Di[f ] := sup
{
|f(x)− f(x′)|

∣∣ xj = x′j ∈ Xj for j 6= i
}
;

the McDiarmid diameter of f is D[f ] :=
(∑n

i=1 Di[f ]
2
)1/2

.

X1

X2

b

x

b

x′
 D1[f ]
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Introduction McDiarmid’s Inequality

McDiarmid’s Inequality

D[f ]2 =

n∑

i=1

(
sup

{
|f(x)− f(x′)|

∣∣ xj = x′j ∈ Xj for j 6= i
})2

.

Theorem (McDiarmid 1989)

For every product measure µ on X = X1 × · · · × Xn such that E[|f |] is
finite (i.e. the components of X = (X1, . . . ,Xn) are independent random
variables), and for every r > 0,

µ[f − E[f ] ≥ r] ≤ exp

(
− 2r2

D[f ]2

)

µ[f − E[f ] ≥ −r] ≤ exp

(
− 2r2

D[f ]2

)
.

Sullivan & al. (Caltech) UQ via Codimension 1 Partitioning SAMO 2010 6 / 32



Introduction McDiarmid’s Inequality

Certification using McDiarmid’s Inequality

McDiarmid’s inequality implies that

µ[f ≤ θ] ≤ exp

(
−2(E[f ]− θ)2+

D[f ]2

)
.

This provides a rigorous certification criterion in terms of the performance
margin (E[f ]− θ)+ and the McDiarmid diameter D[f ]: the system is
certified as safe if

exp

(
−2(E[f ]− θ)2+

D[f ]2

)
≤ ǫ.

Application of McDiarmid’s inequality is not an ideal method:

determination of D[f ] requires n (n+ 1)-dimensional global
optimizations — this may be expensive if f is irregular;

D[f ] is a global sensitivity measure — because of this, McDiarmid’s
inequality is often not sharp.
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Introduction McDiarmid’s Inequality

McDiarmid’s Inequality is Not Sharp

x

f(x)

1

1/4

0

0 1/3 2/3 1

failure

Exact probability of failure if µ = uniform: µ[f ≤ 1
4 ] =

5
12 ≈ 0.42

McDiarmid’s bound: µ[f ≤ 1
4 ] ≤ e−1/8 ≈ 0.88
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McDiarmid’s Inequality is Not Sharp

x

f(x)

1

1/4

0

0 1/3 2/3 1

failure

Exact probability of failure if µ = uniform: µ[f ≤ 1
4 ] =

5
12 ≈ 0.42

McDiarmid’s bound: µ[f ≤ 1
4 ] ≤ e−1/8 ≈ 0.88

McDiarmid’s bound on each third: µ[f ≤ 1
4 ] ≤ 1

3(0 + e−1/8 + 1) ≈ 0.63
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McDiarmid’s Inequality with Partitioning Partitioning

McDiarmid’s Inequality with Partitioning

Let P be a finite or countable partition of X into pairwise-disjoint
measurable rectangles, and let µ be any product measure on X for which
Eµ[|f |] is finite. Then

µ[f ≤ θ] =
∑

A∈P

µ([f ≤ θ] ∩A)

=
∑

A∈P

µ(A)µ[f ≤ θ|A]

≤
∑

A∈P

µ(A) exp

(
−2(E[f |A]− θ)2+

D[f |A]2
)

=: µP [f ≤ θ].
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McDiarmid’s Inequality with Partitioning Error Bounds and Convergence

Error Bound

Proposition (Error bound)

Let f : X → R be measurable and let P be a partition of X . Then, for
every ε > 0, and for all sufficiently small δ > 0,

0 ≤ µP [f ≤ θ]− µ[f ≤ θ] < ε+ sup
A∈Pδ

exp


−

2
(
δ −∑n

j=1Dj[f |A]
)2
+

D[f |A]2


 ,

where
Pδ := {A ∈ P | f(A) ∩ (θ + δ,+∞) 6= ∅}.

I.e. the amount by which µP [f ≤ θ] is an over-estimate of the probability
of failure is controlled by the McDiarmid subdiameters (not the metric
diameter) of those A ∈ P on which f exceeds the threshold for success by
more than δ somewhere in A.

Sullivan & al. (Caltech) UQ via Codimension 1 Partitioning SAMO 2010 10 / 32



McDiarmid’s Inequality with Partitioning Codimension-One Recursive Partitioning Using Subdiameters

Partitioning Algorithms

For simplicity, restrict attention to parameter spaces that are compact
boxes in R

n:
X = [a1, b1]× · · · × [an, bn].

How can one efficiently construct a partition P of X for which µP [f ≤ θ]
is nearly µ[f ≤ θ]?

Näıve Method

Construct a sequence (P(k))k∈N by bisecting each box A ∈ P(k) in each
of the n coordinate directions to produce the boxes of P(k + 1).

The näıve method is strongly affected by the curse of dimension: there are
2n new boxes with each iteration. Therefore, we propose an algorithm in
which the McDiarmid subdiameters are used as sensitivity indices to guide
a codimension-one recursive partitioning scheme.
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McDiarmid’s Inequality with Partitioning Codimension-One Recursive Partitioning Using Subdiameters

Codimension-One Recursive Partitioning Using

Subdiameters (CORPUS)

Recursively define a sequence of partitions (P(k))k∈N as follows: for each
A ∈ P(k),

1 if A ∈ P(k) satisfies infx∈A f(x) > θ (i.e. f always succeeds on A),
then include A in P(k + 1) as it is;

2 if A ∈ P(k) satisfies supx∈A f(x) ≤ θ (i.e. f always fails on A), then
include A in P(k + 1) as it is;

3 otherwise,
1 determine j ∈ {1, . . . , n} such that Dj [f |A] is maximal (choose one

such j arbitrarily if there are multiple maximizers);
2 set c(A) :=

∫
A
xdx, the geometric centre of A;

3 bisect A by a hyperplane of codimension one (i.e. of dimension n− 1)
through c(A) and normal to êj , the unit vector in the jth coordinate
direction;

4 include in P(k + 1) the two subsets of A so generated, but not the
original set A; the two new sets are called the children of A.
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McDiarmid’s Inequality with Partitioning Codimension-One Recursive Partitioning Using Subdiameters

[f ≤ θ]
(failure)

[f > θ]
(success)
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McDiarmid’s Inequality with Partitioning Codimension-One Recursive Partitioning Using Subdiameters

CORPUS Convergence Theorem

Theorem

For every bounded box X = X1 × · · · × Xn ⊆ R
n and every uniformly

continuous f : X → R, the CORPUS algorithm generates a sequence of
partitions (P(k))k∈N such that

µ[f ≤ θ] = lim
k→∞

µP(k)[f ≤ θ].

Sketch of Proof

It is enough to show that, for any initial box A, every generation-g child
A′ of A with g sufficiently large must satisfy one of the following:

Dj[f |A′] ≤ 1

2
Dj[f |A] for all j = 1, . . . , n, or

sup
x∈A′

f(x) ≤ θ or inf
x∈A′

f(x) > θ.
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McDiarmid’s Inequality with Partitioning Hypervelocity Impact Example

Hypervelocity Impact

Figure: Caltech’s Small Particle Hypervelocity Impact Range (SPHIR): a two-
stage light gas gun that launches 1–50mg projectiles at speeds of 2–10 km · s−1.
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McDiarmid’s Inequality with Partitioning Hypervelocity Impact Example

Hypervelocity Impact: Surrogate Model

Experimentally-derived deterministic surrogate model for the perforation
area (in mm2):

plate thickness h ∈ [1.52, 2.67]mm;

impact obliquity α ∈ [0, π6 ];

impact speed v ∈ [2.1, 2.8] km · s−1.

f(h, α, v) := 10.396

((
h

1.778

)0.476

(cosα)1.028 tanh

(
v

vbl
− 1

))0.468

+

The quantity vbl(h, α) given by

vbl(h, α) := 0.579

(
h

(cosα)0.448

)1.400

is called the ballistic limit, the impact speed below which no perforation
occurs. The failure event is non-perforation, i.e. [f = 0] ≡ [f ≤ 0].
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McDiarmid’s Inequality with Partitioning Hypervelocity Impact Example

Hypervelocity Impact: Surrogate Model
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Figure: The surrogate perforation area model of the previous slide.
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McDiarmid’s Inequality with Partitioning Hypervelocity Impact Example

Hypervelocity Impact: Effect of Partitioning

0 1 2 3 4 5 6
−4

−3

−2

−1

0

log#P

log µP [f = 0]

Figure: In blue, the µP upper bound on the failure probability versus the number
of boxes #P used by the CORPUS algorithm. In green, the corresponding upper
bound obtained if all boxes are subdivided, instead of just those on which f both
succeeds and fails. In red, the exact probability of failure.
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Confidence Bounds and Half-Spaces Empirical Bounds

Confidence in Empirical Bounds

Suppose that we are given a partition P = A1 ⊎ · · · ⊎AK for which we
know µ(Ak) and D[f |Ak] for each k = 1, . . . ,K, but our knowledge of the
local mean performance E[f |Ak] comes from mk empirical samples:

E[f |Ak] 〈f |Ak〉 :=
1

mk

mk∑

j=1

f(X(j)).

It is not true that

µ[f ≤ θ] ≤
K∑

k=1

µ(Ak) exp

(
−2(〈f |Ak〉 − θ)2+

D[f |Ak]2

)
;

however, it may be true, with acceptably high probability, that

µ[f ≤ θ] ≤
K∑

k=1

µ(Ak) exp

(
−2(〈f |Ak〉 − αk − θ)2+

D[f |Ak]2

)
,

where αk > 0 are suitable margin hits.
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Confidence Bounds and Half-Spaces Empirical Bounds

McDiarmid’s Inequality with an Empirical Mean

Theorem

Let X(1), . . . ,X(m) be m independent µ-distributed samples of X and let

〈f〉 := 1

m

m∑

j=1

f(X(j))

be the associated empirical mean of f . Then, for every ε > 0, with
µ-probability at least 1− ε on the m samples,

µ[f ≤ θ] ≤ exp

(
−2(〈f〉 − α− θ)2+

D[f ]2

)
,

where α := D[f ]

√
log(1/ε)

2m
.
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Confidence Bounds and Half-Spaces Empirical Bounds

Partitioned McDiarmid’s Inequality with Empirical Means

Given α = (α1, . . . , αK) ∈ R
K , let

Hα(y) :=
K∑

k=1

µ(Ak) exp

(
−2(E[f |Ak]− yk − αk − θ)2+

D[f |Ak]2

)
.

We seek a bound
µ
[
Hα(Y ) ≤ Hα(−α)︸ ︷︷ ︸

≡µP [f≤θ]

]
≤ ???

where
Yk := E[f |Ak]− 〈f |Ak〉.

Note that each Yk is a real-valued random variable that concentrates
about its mean, 0: for any r > 0,

µ[Yk ≥ r] and µ[Yk ≤ −r] ≤ exp

(
− 2mkr

2

D[f |Ak]2

)
.
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Confidence Bounds and Half-Spaces Empirical Bounds

Level Sets of Hα

-4 -3 -2 -1 0 1

-4

-3

-2

-1

0

1

2

Figure: 20 equally-spaced contours of Hα, which increases from 0 in the
bottom-left to 1 in the top-right. Note that Hα is increasing and that sublevels of
small enough values are convex.
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Confidence Bounds and Half-Spaces Empirical Bounds

Bounds Using Orthants

Since Hα is increasing in each of its K arguments and the K random
variables 〈f |Ak〉 are independent, one bound on µ[Hα(Y ) ≤ Hα(−α)] is
provided as follows: fix ε > 0, choose any ε1, . . . , εK > 0 such that
1− ε =

∏K
k=1(1− εk), and set

αk := D[f |Ak]

√
log(1/εk)

2mk
.

Then

µ
[
Hα(Y ) ≥ Hα(−α)

]
≥

K∏

k=1

µ[Yk ≥ −αk]

≥
K∏

k=1

(1− εk)

= 1− ε.
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Confidence Bounds and Half-Spaces Empirical Bounds

The Problem with Orthants. . .

-4 -3 -2 -1 0 1

-4

-3

-2

-1

0

1

2

The problem with the bound on the
previous slide is that for even moderately
large K, εk must be tiny in order to make ε
small enough. It then follows that mk must
be large in order to make the margin hit αk

acceptably small.

Geometrically, this can be seen as a
consequence of using K-dimensional
orthants to estimate the measure of a set:
viewed from their vertices, high-dimensional
orthants look very “narrow”.

Half-spaces are much better, dimensionally
speaking, since they always fill half the
“field of view”.
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Confidence Bounds and Half-Spaces Confidence Bounds using Half-Spaces

A Bound on the Measure of a Half-Space

Denote by Hp,ν the closed half-space in R
K that has p on its boundary

and ν as an outward-pointing normal:

Hp,ν :=
{
y ∈ R

K
∣∣ ν · y ≤ ν · p

}
.

Since E[ν · Y ] = 0, application of McDiarmid’s inequality yields that

µ[Y ∈ Hp,ν] ≤ exp

(
−2(ν · p)2−

/
K∑

k=1

|νk|2
mk

D[f |Ak]
2

)
.

Hence, for any S ⊆ R
K ,

µ[Y ∈ S] ≤ inf



exp


− 2(ν · p)2−∑K

k=1
|νk|2

mk
D[f |Ak]2



∣∣∣∣∣∣
p ∈ R

K and ν ∈ R
K

such that S ⊆ Hp,ν



 .
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Confidence Bounds and Half-Spaces Confidence Bounds using Half-Spaces

Consequences for Hα

Suppose it is known a priori that Hα(−α) is small enough that the
sublevel set H−1

α ([0,Hα(−α)]) is convex. Then, applying the inequality
from the previous slide with p = −α and ν = ∇Hα(−α) yields that

µ
[
Hα(Y ) ≤ Hα(−α)

]
≤ exp


− 2(∇Hα(−α) · α)2+∑K

k=1
|∂kHα(−α)|2

mk
D[f |Ak]2


 .

Note:

∂kHα(−α) =
4µ(Ak)(E[f |Ak]− θ)+

D[f |Ak]2
exp

(
−2(E[f |Ak]− θ)2+

D[f |Ak]2

)
≥ 0.

Note also that, by assumption, E[f |Ak] is unknown, so in practice one
takes a supremum over known ranges of values for E[f |Ak].
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Confidence Bounds and Half-Spaces Confidence Bounds using Half-Spaces

K = 2, m1 = m2 = 5 ε1 = ε2 = 1%

Upper bounds on the probability of failure
(i.e. non-perforation, [f = 0])

If inputs uniformly dist. 3.7%

Exact local means: µP [f = 0] 33%

Empirical local means: Hα(Y ) 54%

Confidence levels

(i.e. upper bounds on µ
[
Hα(Y ) ≤ µP [f = 0]

]
)

Orthant method 2%

Half-space method
Means known exactly 0.9%

Means known to within ±1mm2 0.9%

Means known to within ±5mm2 1.0%
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K = 2, m1 = m2 = 5 ε1 = ε2 = 1% ε1 = ε2 = 0.1%

Upper bounds on the probability of failure
(i.e. non-perforation, [f = 0])

If inputs uniformly dist. 3.7%

Exact local means: µP [f = 0] 33%

Empirical local means: Hα(Y ) 54% 58%

Confidence levels

(i.e. upper bounds on µ
[
Hα(Y ) ≤ µP [f = 0]

]
)

Orthant method 2% 0.20%

Half-space method
Means known exactly 0.9% 0.09%

Means known to within ±1mm2 0.9% 0.09%

Means known to within ±5mm2 1.0% 0.10%
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Confidence Bounds and Half-Spaces Confidence Bounds using Half-Spaces

Scaling of Confidence Levels with K

This example leads us to consider the very different scaling properties of
the orthant and half-space methods, provided sample sizes m1, . . . ,mK

are chosen appropriately.

Proposition

Suppose that the same level of confidence 1− ε0 is required for each local
mean E[f |Ak], k = 1, . . . ,K. Choose sample sizes mk such that

√
mk ∝ ∂kHα(−α)D[f |Ak].

Then the confidence levels for Hα are given by:

half-space method: µ
[
Hα(Y ) ≥ Hα(−α)

]
≥ 1− εK0 ;

orthant method: µ
[
Hα(Y ) ≥ Hα(−α)

]
≥ (1− ε0)

K .
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Confidence Bounds and Half-Spaces Confidence Bounds using Half-Spaces

Half-Space / Chernoff Concentration

The use of half-spaces exploits the fact that, in a probability normed
vector space V, a convex set C that does not contain the centre of
mass has small measure — exponentially small with respect to its
distance from the centre of mass.

Hence, a quasiconvex function f on V is unlikely to assume values
below its value at the centre of mass.

This differs from concentration/deviation results in the literature in
two ways:

there are no smoothness assumptions on f ;
the result is a one-sided concentration about the value of f at the
centre of mass, not about E[f ].

We believe that results of this type indicate a deeper connection
between concentration-of-measure phenomena and large deviations
principles.
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Conclusions and Outlook Conclusions

Conclusions

In situations where failure is a rare event but McDiarmid diameters can be
computed:

McDiarmid’s inequality offers a rigorous upper bound on the
probability of failure (certification criterion);

partitioning offers a way to obtain arbitrarily sharp upper bounds on
the probability of failure, at the cost of further diameter calculations;

this can be done in ways that avoid the näıve curse of dimension;

half-space methods provide confidence bounds in which
high-cardinality partitions are a help, not a hindrance.
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Conclusions and Outlook Outlook

Outlook

It is not necessary to assume that the components of
X = (X1, . . . ,Xn) are independent and that the partition elements
are rectangles: in the general situation, resort to martingale
inequalities.

The µ and f to which CORPUS is applied may be surrogates for the
real µ′ and f ′ on which the probability of failure upper bound will be
calculated (perhaps using sampling) — can the approximation error
be controlled?

Does it make sense to ask for the “optimal” partition of a given
cardinality? of a given mesh size?

How can these methods be extended to handle noisy / imperfectly
observed response functions f?
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