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Introduction Introduction

Introduction

Many deterministic physical processes are modeled by evolution laws
that incorporate not just energetics but also dissipation, i.e. loss of
energy due to frictional effects. Mathematically, these processes can
be modelled as gradient descents — in the case of 1-homogenous
dissipation, they are rate-independent processes.

Also, many physical processes are subject to some randomness,
perhaps due to the presence of a heat bath, which supplies additional
(uncorrelated) energy to the process.

Question

How does a gradient descent (in particular, a rate-independent system)
behave when placed in contact with a heat bath?

To investigate this, we introduce a notion of thermalized gradient descent.
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Introduction Introduction

Introduction

The thermalization procedure is quite general, and in the case of
2-homogenous dissipation it corresponds to additive Itō noise.

In the case of 1-homogeneous dissipation (a rate-independent
system), something unexpected happens: the heat bath destroys the
rate-independence in a controlled way and yields a deterministic
nonlinear gradient descent; the thermalized dissipation potential is a
“smoothing out” of the original one.

As a toy model, consider a rough block sitting on a sandpaper table
and subject to forces (springs, external loads, & c.) weaker than the
frictional resistance of the sandpaper/block interface. Intuition
suggests that

at “zero temperature”, the block shouldn’t move at all;
at “positive temperature” (shaking the table), the block might move
— will it move deterministically? randomly?

Sullivan & al. (Caltech) Rate-Independence in a Heat Bath R.-I. Systems @ BIRS, 2010 4 / 27



Introduction Some Notation

Some Notation

P will denote a finite partition of an interval of time [0, T ]:

P = {0 = t0 < t1 < t2 < · · · < tN = T}.

∆ will denote the backward difference operator acting on sequences,
finite or infinite, taking values in R, Rn, or any vector space Z:

∆zi := zi − zi−1.

z(P ) : [0, T ] → Z will denote the piecewise-constant càdlàg
interpolation of z0, z1, . . . , zN ∈ Z on the partition P :

z(P )(t) := zi for all t ∈ [ti, ti+1).

JP K will denote the mesh size of P :

JP K := max
i=1,...,N

|∆ti|.
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Gradient Descents Generalized Gradient Descents

Gradient Descents — The Basics

Many evolutionary models for physical processes are posed in terms of
a quantity/field of interest, z : [0, T ] → Z, Z being some (suitably
nice) linear space (e.g. Hilbert, Banach, BV(Ω;R3), . . . ).

The evolution of z is determined by an initial condition, an energetic
potential E : [0, T ]×Z → R ∪ {+∞} and a dissipation potential
Ψ: Z → [0,+∞].

Example

In Z = Rn with dissipation Ψ = 1
2‖ · ‖22, we have the classical gradient

descent
ż(t) = −∇E(t, z(t)).

Along a trajectory, the energy satisfies the energy balance

d

dt
E(t, z(t)) = −‖ż(t)‖22 + (∂tE)(t, z(t)).
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Gradient Descents Generalized Gradient Descents

Gradient Descents — Energetic Solutions

Definition

z : [0, T ] → Z is said to be an energetic solution of the gradient descent
problem in E and Ψ if z is absolutely continuous, satisfies the prescribed
intitial condition, and, Lebesgue-a.e. in [0, T ], the energy balance

d

dt
E(t, z(t)) = −

(
Ψ(ż(t)) + Ψ⋆(DE(t, z(t)))

)
+ (∂tE)(t, z(t)),

where Ψ⋆ : Z⋆ → R ∪ {+∞} is the convex conjugate of Ψ:

Ψ⋆(ℓ) := sup{〈ℓ, x〉 −Ψ(x) | x ∈ Z}.

Much of this carries over to state spaces with no linear structure: see
Ambrosio, Gigli & Savaré (2008), Gradient Flows in Metric Spaces and in
the Space of Probability Measures.

Sullivan & al. (Caltech) Rate-Independence in a Heat Bath R.-I. Systems @ BIRS, 2010 7 / 27



Gradient Descents Generalized Gradient Descents

Gradient Descents — Incremental Formulation

Typically, existence and uniqueness questions for gradient descents, as
well as computation, are addressed using the Moreau–Yosida (implicit
Euler) incremental formulation: given zi ≈ z(ti), find zi+1 ≈ z(ti+1)
to minimize

Wi+1 : z̃ 7→ E(ti+1, z̃)− E(ti, zi)︸ ︷︷ ︸
energy difference

+∆ti+1Ψ

(
z̃ − zi
∆ti+1

)

︸ ︷︷ ︸
dissipation

. (MY)

The idea now is to generate a thermalized gradient descent Z by
seeking densities ρ(t, z) that minimize a functional in which (MY)
competes with a entropy term.

For simplicity, we now restrict our attention to Z = Rn, and
“entropy” will mean relative entropy with respect to n-dimensional
Lebesgue measure.
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TGD — Generalities Thermalized Gradient Descent

Thermalized Gradient Descent

Consider the following incremental problem for the PDF ρ(t, ·) of Zt with
respect to Lebesgue measure on Rn at times 0 = t0 < t1 < . . . < tN = T :

Consider the “prior” density ρi ≈ ρ(ti, ·) on Rn.

Find a new joint density ρi,i+1(·, ·) on (Rn)2, with first marginal ρi,
that minimizes

ρ̃ 7→
∫∫ [

Wi+1ρ̃+ ερ̃ log ρ̃
]
,

where

Wi+1(zi, zi+1) = E(ti+1, zi+1)− E(ti, zi+1) + ∆ti+1Ψ

(
∆zi+1

∆ti+1

)

is the Moreau–Yosida “cost” of changing from state zi to state zi+1

in the absence of the heat bath.

Integrate/marginalize over the first slot of ρi,i+1(·, ·) to get a
“posterior” density ρi+1 on Rn for time ti+1.
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TGD — Generalities Thermalized Gradient Descent
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Figure: One step of the incremental thermalized gradient descent problem.
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TGD — Generalities Thermalized Gradient Descent

Thermalized Gradient Descent

Lemma

Subject to mild regularity and growth conditions, the single-step
increments follow a Gibbs–Boltzmann-type distribution with respect to the
Moreau–Yosida incremental cost function:

ρi+1(zi+1|zi) =
1

C(zi)
exp

(
− Wi+1(zi, zi+1)/ε

)
.

Definition

On a partition P of [0, T ], we will call the Markov chain Z(P ) so generated
the (discrete-time) thermalized gradient descent in E and Ψ.

Question. What limit, if any, does the càdlàg process Z
(P )

have as
JP K → 0?
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TGD — Generalities Thermalized Gradient Descent — 2-Homogeneous Dissipation

Thermalized Gradient Descent

Example

For “nice” potentials E and the 2-homogeneous dissipation potential

Ψ :=
1

2
‖ · ‖22,

the incremental scheme makes sense. As JP K → 0, the piecewise constant

càdlàg interpolation Z
(P )

: Ω× [0, T ] → Rn of Z(P ) converges in law on
C0([0, T ];Rn) to the solution Y of the Itō stochastic gradient descent

Ẏ (t) = −∇E(t, Y (t)) +
√
ε Ẇ (t);

i.e., the thermalized gradient descent scheme is a plausible model for
“linear kinetics + noise”.
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TGD — 1-Homo. Setting

Thermalizing a Rate-Independent Process

Consider a “nice” rate-independent system in Rn:

an energetic potential E : [0, T ]× Rn → R — convex, time derivative
in W 1,∞, space derivative in C1;

a dissipation potential Ψ: Rn → [0,+∞) — homogeneous of degree
one and strictly convex (i.e. non-degenerate). Ψ is the convex
conjugate of the characteristic function of a convex compact set
E ( (Rn)∗ that has 0 ∈ E̊ , the elastic region:

Ψ(v) = sup{〈ℓ, v〉 | ℓ ∈ E }.

Study the process Z(P ) by studying its increments:

∆Z
(P )
i := Z

(P )
i − Z

(P )
i−1.

What are the moments of the increments, E
[
∆Z

(P )
i

]
, Var

[
∆Z

(P )
i

]
& c.?
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TGD — 1-Homo. Effective (Dual) Dissipation Potential

Effective (Dual) Dissipation Potential

Definition

Define an effective dual dissipation potential

Ψ̃⋆ : (Rn)∗ → R ∪ {+∞}

by

Ψ̃⋆(ℓ) := log

∫

Rn

exp
(
−
(
〈ℓ, x〉 +Ψ(x)

))
dx.

(Cf. the cumulant-generating function of the measure dψ = e−Ψ(x) dx)
Define the effective dissipation potential by convex conjugation:

Ψ̃(x) = Ψ̃⋆⋆(x) := sup
{
〈ℓ, x〉 − Ψ̃⋆(ℓ)

∣∣ ℓ ∈ (Rn)∗
}
.

Note that Ψ̃ is determined purely by the dissipation functional Ψ (or,
equivalently, the elastic region E ( (Rn)∗ associated to Ψ).
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TGD — 1-Homo. Effective (Dual) Dissipation Potential

Ψ̃⋆(ℓ) := log

∫

Rn

exp
(
−
(
〈ℓ, x〉 +Ψ(x)

))
dx.

Ψ̃(x) := sup
ℓ

[
〈ℓ, x〉 − Ψ̃⋆(ℓ)

]
.
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Figure: The effective (dual) dissipation potential in dimension one for Ψ(x) = |x|.
Ψ̃⋆ blows up like the logarithm of the distance to the yield surface ∂E . Ψ̃ is
smooth and is asymptotic to Ψ at infinity.
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TGD — 1-Homo. Effective (Dual) Dissipation Potential

Explicit Examples

Example

If Ψ is the weighted ℓ1 norm Ψ(x) := σ1|x1|+ . . .+ σn|xn|, with weights
σi > 0, then (up to an additive constant)

Ψ̃⋆(ℓ) = −
n∑

i=1

log
(
σ2i − |ℓi|2

)
.

Example

If Ψ is a multiple of the Euclidean norm, Ψ(x) := σ‖x‖2, σ > 0, then

Ψ̃⋆(ℓ) = log

∫

Sn−1

(n− 1)!
(
〈ℓ, ω〉+ σ

)−n dHn−1(ω)

= −n+ 1

2
log

(
σ2 − ‖ℓ‖22

)
.
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TGD — 1-Homo. Effective (Dual) Dissipation Potential

Why Ψ̃?

The reason that Ψ̃ is so important is that the change of variables
Zi+1  ∆Zi+1/εi+1 yields (modulo higher-order error terms):

E
[
∆Zi+1

∣∣Zi = zi
]
≈ −εi+1DΨ̃⋆

(
DE(ti+i, zi)

)
;

Var
[
∆Zi+1

∣∣Zi = zi
]
≈ −ε2i+1

∥∥∥D2Ψ̃⋆
(
DE(ti+i, zi)

)∥∥∥
2
≪ εi+1.

Hence, it looks like the continuous-time limit with εi+1 = θ∆ti+1

should satisfy the deterministic ordinary differential equation

ẏ(t) = −θDΨ̃⋆
(
DE(t, y(t))

)
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Hence, it looks like the continuous-time limit with εi+1 = θ∆ti+1

should satisfy the deterministic ordinary differential equation

ẏ(t) = −θDΨ̃⋆
(
DE(t, y(t))

)

i.e., DΨ̃

(
− ẏ(t)

θ

)
= DE(t, y(t)),
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TGD — 1-Homo. Convergence Result

Convergence Result

Theorem (Convergence to Nonlinear Gradient Descent)

If (t, x) 7→ Ψ̃⋆(DE(t, x)) is convex in x for each t ∈ [0, T ], then the

piecewise constant càdlàg interpolation Z
(P )

: Ω× [0, T ] → Rn converges
in probability as JP K → 0 to the solution of

DΨ̃

(
− ẏ(t)

θ

)
= DE(t, y(t)).

More precisely, for any λ > 0, as JP K → 0,

P

[
sup

t∈[0,T ]

∥∥∥Z(P )
(t)− y(t)

∥∥∥
2
≥ λ

]
∈ O

(
JP K1/2

)
.

(If D2E ≡ 0, then the order of convergence is O(JP K).)
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TGD — 1-Homo. Convergence Result
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Indicated in green is the frontier of the stable region,

S(t) := {x ∈ Rn | −DE(t, x) ∈ E }.
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Application: Andrade Creep Andrade’s Creep Law

Andrade’s Creep Law

In 1910, Andrade reported that as a function of time, t, the creep
deformation, ξ, of soft metals at constant temperature and applied
stress can be described by a power law ξ(t) ∼ t1/3. Similar behavior
has been observed in many classes of materials, including
non-crystalline materials.

Morally, macroscopic creep should be observed as a change in the
mean of the microscopic slip field.

We will study this using the Koslowski–Cuitiño–Ortiz phase field
model for a material sample along a single slip plane, thought of as
the unit torus, T2.

The phase field u ∈ H1/2(T2;R) measures the total amount of slip at
each point: u(x) ∈ R is the slip (in multiples of the Burgers vector b)
at x ∈ T2.
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Application: Andrade Creep Andrade’s Creep Law

KCO Phase Field Model — Details

In the KCO model the energetic potential is

E(s, u) :=
∑

k∈Z2\{0}

µb2

4

1

1/K + d/2
|û(k)|2 − (s · b)

∫

T2

u(x) dx,

where û is the Fourier transform of u, k ∈ Z2 is the wavenumber,

K :=
1

1− ν

√
k21 + k22 −

ν

1− ν

k22√
k21 + k22

,

b is the Burgers vector, s is the applied shear stress, ν is Poisson’s ratio
and d is the interplanar distance. For µ > 0 (the shear modulus), the
dissipation potential is

Ψ(u) = µ
∑

p∈O

∫

Br(p)
|u(x)|dx.
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Application: Andrade Creep Reduction of the Phase Field

Reduction of the KCO Model

In KCO, the dissipation Ψ is not positive-definite on H1/2(T2;R): it
is concentrated over discs of radius 0 < r ≪ 1 centred on a (random)
point set of obstacles, O. Hence, only the values of the phase field
over O experience dissipation.

Schur complementation (minimizing out those degrees of freedom
that do not experience dissipation) yields a reduced finite-dimensional
model posed in RO. The reduced energetic potential is a quadratic
form in ξ := u|O:

Ered(s, ξ) =
1

2
ξ ·Gξ − (s · b)τ · ξ + h

2
(s · b)2

and the reduced dissipation Ψred is a non-degenerate weighted ℓ1

norm.
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Application: Andrade Creep Reduction of the Phase Field

Mean Field Model

Write ξ as the sum of its mean and the fluctuation about the mean:

ξ̄ :=
1

#O
∑

p∈O

ξp ∈ R, ξ̂ := ξ − ξ̄1.

Creep is a “bulk phenomenon” in the sense that it is a change of the
mean field ξ̄ of the overall phase field. Numerical experiments bear
out the hypothesis that the fluctuations ξ̂ of the phase field about its
mean are small (in the sense that they dissipate very little energy).

Therefore, we narrow the focus of our study to the one-dimensional
mean field ξ̄. The resulting model is of the form

EMF

(
s, ξ̄

)
= −(s · b)τ̄ ξ̄; ΨMF

(
ξ̄
)
= σ

∣∣ξ̄
∣∣,

where σ = µ · πr2 ·#O.
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Application: Andrade Creep Convergence Result

Convergence Result

In this case, the effective dual dissipation potential for the mean field
is

Ψ̃⋆
MF

(
ℓ̄
)
= − log

(
σ2 − (s · b)2τ̄2

)
.

Under the assumption of linear strain hardening (i.e. σ = σ0ξ̄) the
resulting effective ordinary differential equation is

dξ̄(t)

dt
=

2θ(s · b)τ̄
(
σ0ξ̄(t)

)2 − (s · b)2τ̄2
.

For fixed θ and 0 < (s · b)τ̄ ≪ σ (i.e. constant temperature and
constant small applied stress), solutions grow in accord with
Andrade’s creep law:

ξ̄(t) ∼ t1/3.
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Conclusions and Outlook Conclusions

Conclusions

Given a reference measure and hence a notion of entropy, gradient descents
can be thermalized and the resulting Markov chain models analyzed.

In the case of 2-homogeneous dissipation, the TGD scheme describes
the effect of adding Itō noise.

In the case of 1-homogeneous dissipation, the TGD scheme yields a
deterministic gradient flow in an effective dissipation potential Ψ̃ that
is a nonlinear transformation (“smoothing-out”) of the original
dissipation potential Ψ.

As an application, this analysis can be used to derive Andrade’s creep
law for soft metals under the assumption of linear strain hardening.
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Conclusions and Outlook Outlook

Outlook

Can this analysis be extended to

second-order equations of motion (inertial effects, non-Markovian
processes)? Difficulty: increments are very badly behaved, variances
can blow up in short time.

infinite-dimensional and/or non-linear state spaces? Difficulty: with
respect to what reference measure will entropy be calculated?

“Commutativity Question”. The Andrade creep law should follow
directly from applying the TGD method to the Koslowski–Cuitiño–Ortiz
model in H1/2(T2) and then examining the mean field, not passing to a
mean field model first and then applying TGD.
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