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Introduction Uncertainty Quantification

What is Uncertainty Quantification?

?
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Introduction Uncertainty Quantification

The Many Faces of Uncertainty Quantification

The Elephant in the Room: there is a growing consensus that UQ is
an essential component of objective science.

The Blind Men and the Elephant: unfortunately, as it stands at the
moment, UQ has all the hallmarks of an ill-posed problem.

Problems

Certification

Extrapolation/Prediction

Reliability Estimation

Sensitivity Analysis

Verification

Validation

. . .

Methods

Analysis of Variance

Bayesian Methods

Error Bars

Latin Hypercube Sampling

(Quasi) Monte Carlo

Stochastic Collocation

. . .
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Introduction Uncertainty Quantification

Optimal Uncertainty Quantification

We propose a mathematical framework for UQ as an optimization
problem, which we call Optimal Uncertainty Quantification (OUQ).

H. Owhadi, C. Scovel, T. J. Sullivan, M. McKerns & M. Ortiz.
“Optimal Uncertainty Quantification” (2010)
Submitted to SIAM Review. Preprint at

http://arxiv.org/pdf/1009.0679v1

The development and application of OUQ to real, complex problems
is a collaborative interdisciplinary effort that requires expertise in

applied mathematics, especially probability theory,
numerical optimization,
(massively) parallel computing,
the application area (e.g. biology, chemistry, economics, engineering,
geoscience, meteorology, physics, . . . ).

This talk will focus on OUQ in the prototypical context of
certification.
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Introduction Certification

The Certification Problem

Suppose that you are interested in a system of interest, G : X → R,
which is a real-valued function of some random inputs X ∈ X with
probability distribution P on X .

Some value θ ∈ R is a performance threshold: if G(X) ≤ θ, then the
system fails; if G(X) > θ, then the system succeeds.

You want to know the probability of failure

P[G(X) ≤ θ],

or at least to know if it exceeds some maximum acceptable probability
of failure ǫ — but you do not know G and P!

If you have some information about G and P, what are the best
rigorous lower and upper bounds that you can give on the probability
of failure using that information?

Optimality is important — the following bounds are true, but useless:

0 ≤ P[G(X) ≤ θ] ≤ 1.
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Introduction Certification

The Importance of Being
Optimal: Being overly
conservative may lead to
economic losses, but being overly
optimistic may lead to loss of life,
environmental damage & c.

Eyjafjallajökull, Iceland, 27 March 2010

Space Shuttle Columbia, 1 February 2003

Deepwater Horizon, 21 April 2010

Sullivan & al. (Caltech/LANL) Optimal UQ ASME 2010 IMECE 7 / 32



Introduction Certification

Uncertainty Quantification Methods

So, how can one bound P[G(X) ≤ θ] given only limited knowledge of G
and P?

Monte Carlo? Needs many independent P-distributed samples.

Stochastic collocation methods? Fine for SPDEs, if we have a good

representation for the randomness and rapid decay of the spectrum.

Bayesian inference? Danger of error propagation in the case of rare

events.

. . .

Each of these methods relies, implicitly or explicitly, on the validity of
certain assumptions in order to be applicable or efficient. Those
assumptions may not match the information about G and P — so we
place the information about G and P at the centre of the problem.
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Optimal Uncertainty Quantification Formulating the Problem

What Problem Should You Solve?

Or: What are You Computing, and Why?
You want to know about the probability of
failure

P[G(X) ≤ θ]?

You want to know if it’s greater than or less
than ǫ?

And you want to do this without ignoring or
distorting your existing information set, nor
making additional assumptions?

If you had access to The Ultimate Computer,
what problem would you try to solve?

Worry about computational feasibility later!

Forty-Two?!
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Optimal Uncertainty Quantification Formulating the Problem

Information / Assumptions

Write down all the information that you have about the system. For
example, this information might come from

physical laws;
expert opinion;
experimental data.

Let A denote the set of all pairs (f, µ) that are consistent with your
information about (G,P):

A ⊆

{
(f, µ)

∣∣∣∣
f : X → R is measurable, and
µ is a probability measure on X

}
.

All you know about reality is that (G,P) ∈ A; any (f, µ) ∈ A is an
admissible scenario for the unknown reality (G,P).
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Optimal Uncertainty Quantification Formulating the Problem

The Optimal UQ Problem

With this notation, the Optimal UQ Problem is simply to find the greatest
lower bound and least upper bound on the probability of failure among all
admissible scenarios (f, µ) ∈ A. That is, we want to calculate

L(A) := inf
(f,µ)∈A

µ[f ≤ θ]

and
U(A) := sup

(f,µ)∈A
µ[f ≤ θ].

Any bounds other than these would either be not sharp or not conservative.
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Optimal Uncertainty Quantification Formulating the Problem

Rigorous and Optimal Certification Criteria

Given a maximum acceptable probability of failure ǫ ∈ [0, 1], calculation of
L(A) and U(A) yields unambiguous, rigorous and optimal criteria for
certification of the system:

if U(A) ≤ ǫ, then the system is safe even in the worst possible case;

if L(A) > ǫ, then the system is unsafe even in the best possible case;

if L(A) ≤ ǫ < U(A), then there are some admissible scenarios under
which the system is safe and others under which it is unsafe: the
information encoded in A is insufficient to rigorously certify the
system, and more information must be sought. The system is
(temporarily) deemed unsafe due to lack of information.
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Optimal Uncertainty Quantification Finite-Dimensional Reduction

Reduction of OUQ

OUQ problems are global, infinite-dimensional, non-convex,
highly-constrained (i.e. nasty!) optimization problems.

The non-convexity is a fact of life, but there are powerful reduction
theorems that allow a reduction to a search space of very
low-dimension.

Instead of searching over all admissible probability measures µ, we
need only to search over those with a very simple “extremal”
structure: in the simplest case, these are just finite sums of point
masses (Dirac measures) on the input parameter space X .

That is, we can “pretend” that all the random inputs are discrete
random variables and just optimize over the possible values and
probabilities that those discrete variables might take.
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Optimal Uncertainty Quantification Finite-Dimensional Reduction

Reduction of OUQ — Linear Inequalities on Moments

Suppose that the admissible set A has the following form: all the
constraints on the measure µ are linear inequalities on generalized
moments. That is, for some given functions g′1, . . . , g

′
n′ : X → R,

A =



(f, µ)

∣∣∣∣∣∣

f : X → R such that
〈some conditions on f alone〉,
Eµ[g

′
1] ≤ 0, . . . , Eµ[g

′
n′ ] ≤ 0



 .

Theorem (General reduction theorem)

If X is a Suslin space, then L(A) = L(A∆) and U(A) = U(A∆), where

A∆ =

{
(f, µ) ∈ A

∣∣∣∣
µ is a sum of at most n′ + 1
weighted Dirac measures on X

}
.
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Optimal Uncertainty Quantification Finite-Dimensional Reduction

Reduction of OUQ — Independent Inputs

Similarly, if we have K independent inputs, i.e. X = X1 × · · · × XK and

A =





(f, µ)

∣∣∣∣∣∣∣∣∣∣

f : X → R such that
〈some conditions on f alone〉,

µ = µ1 ⊗ · · · ⊗ µK ,
Eµ[g

′
1] ≤ 0, . . . , Eµ[g

′
n′ ] ≤ 0,

Eµk
[gki ] ≤ 0 for i = 1, . . . , nk and k = 1, . . . ,K





.

Theorem (Reduction for independent input parameters)

If X1, . . . , XK are Suslin spaces, then L(A) = L(A∆) and
U(A) = U(A∆), where

A∆ =

{
(f, µ) ∈ A

∣∣∣∣
µk is a sum of at most n′ + nk + 1
weighted Dirac measures on Xk

}
.
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Consequences of Optimal UQ McDiarmid’s Inequality

McDiarmid’s Inequality

McDiarmid’s inequality says that if E[G(X)] ≥ m and the maximum
oscillation of G with respect to changes of its kth argument is at most
Dk, then

P[G(X) ≤ θ] ≤ exp

(
−2

(m− θ)2+∑K
k=1D

2
k

)
.

That is, for

AMcD :=





(f, µ)

∣∣∣∣∣∣∣∣∣∣

f : X → R,

Dk[f ] := sup |f(x1, . . . , xk, . . . , xK)−

− f(x1, . . . , x̃k, . . . , xK)| ≤ Dk,
µ = µ1 ⊗ · · · ⊗ µK on X ,

Eµ[f ] ≥ m





,

U(AMcD) ≤ exp

(
−2

(m− θ)2+∑K
k=1D

2
k

)
.
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Consequences of Optimal UQ McDiarmid’s Inequality

Optimal McDiarmid Inequality

The reduction theorems mentioned before, along with other reduction
theorems that eliminate dependency upon the coordinate positions in
the parameter space X , yield finite-dimensional problems that can be
solved exactly to give optimal concentration inequalities with the
same assumptions as McDiarmid’s inequality.

Write a := (m− θ)+ for the mean performance margin.

Optimal McDiarmid, K = 1

U(AMcD) =

(
1−

a

D1

)

+
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Consequences of Optimal UQ McDiarmid’s Inequality

Optimal McDiarmid Inequality

Optimal McDiarmid, K = 2

U(AMcD) =





0, if D1 +D2 ≤ a,

(D1 +D2 − a)2

4D1D2
, if |D1 −D2| ≤ a ≤ D1 +D2,

(
1−

a

max{D1,D2}

)

+

, if 0 ≤ a ≤ |D1 −D2|.

By a combinatorial induction procedure, this can be entended to give
an optimal inequality given the assumptions of McDiarmid’s
inequality for K ∈ N input random variables.

Note that not all parameter sensitivities are created equal! If the
“sensitivity gap” between the largest parameter sensitivity D1 and the
second-largest one D2 is big enough, then all the output uncertainty
is controlled by D1 and the performance margin a := (m− θ)+.

Sullivan & al. (Caltech/LANL) Optimal UQ ASME 2010 IMECE 18 / 32



Consequences of Optimal UQ Experimental Selection

Selection of the Best Next Experiment

Suppose that you are offered a choice of running just one very
expensive experiment from a collection E1, E2, . . . : each experiment
Ei will measure some functional Φi(G,P) to very high accuracy. E.g.

Φ1(f, µ) := Eµ[f ],

Φ2(f, µ) := µ[X ∈ A] for some set A ⊆ X ,

Φ3(f, µ) := D1[f ],

Φ4(f, µ) := Vµ[f |X ∈ A].

Which experiment should you run? How can one objectively say that
one experiment is “better” or “worse” than another?

In the Optimal UQ framework, we can assess how predictive or
decisive a potential experiment may be in terms of “overlap”.
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Consequences of Optimal UQ Experimental Selection

Selection of the Best Next Experiment

Let Jsafe,ǫ(Φi) be the closed interval in R spanned by the possible
values of Φi(f, µ) among all safe scenarios (f, µ) ∈ A, i.e. those with
µ[f ≤ θ] ≤ ǫ.

Let Junsafe,ǫ(Φi) be the closed interval in R spanned by the possible
values of Φi(f, µ) among all unsafe scenarios (f, µ) ∈ A, i.e. those
with µ[f ≤ θ] > ǫ.

Determination of these two intervals means solving four OUQ
problems.

What could you conclude if you were told Φi(G,P)?

Φi(G,P) ∈ Jsafe,ǫ(Φi) \ Junsafe,ǫ(Φi) =⇒ system is safe,

Φi(G,P) ∈ Junsafe,ǫ(Φi) \ Jsafe,ǫ(Φi) =⇒ system is unsafe,

Φi(G,P) ∈ Jsafe,ǫ(Φi) ∩ Junsafe,ǫ(Φi) =⇒ cannot decide,

Φi(G,P) /∈ Jsafe,ǫ(Φi) ∪ Junsafe,ǫ(Φi) =⇒ faulty assumptions!
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Consequences of Optimal UQ Experimental Selection

Selection of the Best Next Experiment

R

Junsafe,ǫ(Φ1)

Jsafe,ǫ(Φ1)

R

Junsafe,ǫ(Φ2)

Jsafe,ǫ(Φ2)

R

Junsafe,ǫ(Φ3)

Jsafe,ǫ(Φ3)

R

Junsafe,ǫ(Φ4)

Jsafe,ǫ(Φ4)

Figure: Outcome intervals for four possible experiments E1, E2, E3 and E4.
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Computational Examples Hypervelocity Impact Surrogate

Hypervelocity Impact

Figure: Caltech’s Small Particle Hypervelocity Impact Range (SPHIR): a two-
stage light gas gun that launches 1–50mg projectiles at speeds of 2–10 km · s−1.
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Computational Examples Hypervelocity Impact Surrogate

Hypervelocity Impact: Surrogate Model

Experimentally-derived deterministic surrogate model for the perforation
area (in mm2), with three independent inputs:

plate thickness h ∈ X1 := [1.52, 2.67]mm = [60, 105]mils;

impact obliquity α ∈ X2 := [0, π6 ];

impact speed v ∈ X3 := [2.1, 2.8] km · s−1.

H(h, α, v) := 10.396

((
h

1.778

)0.476

(cosα)1.028 tanh

(
v

vbl
− 1

))0.468

+

The quantity vbl(h, α) given by

vbl(h, α) := 0.579

(
h

(cosα)0.448

)1.400

is called the ballistic limit, the impact speed below which no perforation
occurs. The failure event is non-perforation, i.e. [H = 0] ≡ [H ≤ 0].
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Computational Examples Numerical Results and Comments

Admissible scenarios, A U(A) Method

AMcD: independence, oscillation and mean ≤ 66.4% McD. ineq.
constraints (exact response H not given) = 43.7% Opt. McD.

A := {(f, µ) | f = H and Eµ[H] ∈ [5.5, 7.5]}
num
= 37.9% OUQ

A ∩

{
(f, µ)

∣∣∣∣
µ-median velocity

= 2.45 km · s−1

}
num
= 30.0% OUQ

A ∩
{
(f, µ)

∣∣µ-median obliquity = π
12

} num
= 36.5% OUQ

A ∩
{
(f, µ)

∣∣ obliquity = π
6 µ-a.s.

} num
= 28.0% OUQ

Warning!

It is tempting to say that some of these bounds are “sharper” than others.
Except for the first line, every one of these bounds is sharp given the
available information. In the case of asymmetric information, think before
condemning a bound as “not sharp”.
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Computational Examples Numerical Results and Comments

Numerical Convergence

Figure: Support of the 2× 2× 2-point measure µ at iteration 0.
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Numerical Convergence

Figure: Support of the 2× 2× 2-point measure µ at iteration 150.
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Numerical Convergence

Figure: Support of the 2× 2× 2-point measure µ at iteration 200.
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Numerical Convergence

Figure: Support of the 2× 2× 2-point measure µ at iteration 1000.
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Computational Examples Numerical Results and Comments

Numerical Convergence

(a) oblquity positions (b) thickness positions (c) velocity positions

(d) obliquity masses (e) thickness masses (f) velocity masses
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Computational Examples Numerical Results and Comments

Comments

Over these parameter ranges, the oscillations of H are:

Dh[H] = 8.86mm2, Dα[H] = 4.17mm2, Dv[H] = 7.20mm2,

so the “screening effects” apply in the optimal McDiarmid inequality.

In the full OUQ analysis, the measure that maximizes the probability
of failure yields important information about the “key players” in the
system.

For given mean perforation area, the worst-case probability of failure
is not controlled by the impact velocity or the oblquity, but by the
thickness of the plate.

The locations of the measure µ’s support points collapse to

the two extremes of the thickness (h) range;
the lower extreme of the obliquity (α) range;
a single non-trivial value in the velocity (v) range.
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Computational Examples Numerical Results and Comments

Extremizers are Attractors?

Figure: Support of the 5× 5× 5-point measure µ at iteration 0.
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Computational Examples Numerical Results and Comments

Extremizers are Attractors?

Figure: Support of the 5× 5× 5-point measure µ at iteration 1000.
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Computational Examples Numerical Results and Comments

Extremizers are Attractors?

Figure: Support of the 5× 5× 5-point measure µ at iteration 3000.
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Computational Examples Numerical Results and Comments

Extremizers are Attractors?

Figure: Support of the 5× 5× 5-point measure µ at iteration 7100.
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Further Work, Conclusions, and References Further Work: OUQ with Legacy Data

Optimal UQ with Legacy Data

So far, we have assumed that the response function G can be
exercised at will. What if this is not the case?

What are the sharpest bounds on global parameter sensitivities or the
probability of failure given only some fixed legacy data

(z1, G(z1)), . . . , (zN , G(zN ))

and some constraints on how much G can vary in between those data
points?

It is essential to have some information on how much G can vary in
between the data points, e.g. |∂G/∂xi| ≤ Li.

Again, this can be posed as an OUQ problem and the reduction
theorems make it a finite-dimensional (albeit non-convex) problem.
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Further Work, Conclusions, and References Further Work: OUQ with Legacy Data

Optimal UQ with Legacy Data

b

(zn, G(zn))

b b

b

bC

bC

(x, y)

(x′, y′)

R

X

Figure: The legacy OUQ problem amounts to the optimal placement of point
masses and function values in a feasible set in X × R that is an intersection of
cones through the given data points.
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Further Work, Conclusions, and References Conclusions

Conclusions

UQ is an essential component of modern science, with many
high-consequence applications. However, there is no established
consensus on how to formally pose “the UQ problem”, nor a common
language in which to communicate and quantitatively compare UQ
methods and results.

OUQ is an opening gambit. OUQ is not just an effort to provide
answers, but an effort to well-pose the question: UQ is the challenge
of optimally bounding functions of unknown responses and unknown
probabilities, given some information about them.

A key feature is that the OUQ viewpoint explicitly requires the user to
explicitly state all the assumptions in operation — once listed, they
can be perturbed to see if the answers are robust.

Although the optimization problems involved are large, in many cases
of interest, their dimension can be substantially reduced.
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