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Introduction Motivation

Why Bother with Uncertainty

Quantification? Being overly
conservative may lead to huge
economic losses, but being overly
optimistic may lead to loss of life,
environmental damage & c.

↓ Eyjafjallajökull, Iceland, 27 March 2010

↑ Space Shuttle Columbia, 1 February 2003

↓ Deepwater Horizon, 21 April 2010
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Introduction Motivation

Four Phases of Design

1 Just build it!

2 Build as best you can, or according to rules of thumb.

3 Build to meet/exceed the deterministic worst case scenario.
e.g. Elishakoff & Ohsaki, Optimization and Anti-Optimization of Structures Under

Uncertainty (2010)

4 Build with a quantitative probabilistic understanding of the
uncertainties.
Owhadi, Scovel, Sullivan, McKerns & Ortiz, “Optimal Uncertainty Quantification”

(preprint, 2010)

The optimization problems that we consider can involve huge numbers of
model evaluations; in practical applications they will rely upon — and
stimulate — developments in parallel computing.
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Introduction Types of Uncertainty

Types of Uncertainty

Uncertainties are often divided into two types: epistemic and aleatoric
uncertainties.

An epistemic uncertainty is one that stems from a fundamental lack
of knowledge — we don’t know the rules that govern the problem.
Epistemic uncertainties are potentially very hard to deal with.

An aleatoric uncertainty is one that stems from intrinsic randomness
in the system — a “roll of the dice”. Aleatoric uncertainties are nicer
than epistemic ones since we can, in principle, bring the tools of
probability theory to bear.

In practice, many apparently aleatoric uncertainties are epistemic: you
know that some parameter X is randomly distributed in some set, but
you don’t know its probability distribution exactly.
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Introduction Multiphase Steel Example

Example: Design of Multiphase Steels

Advanced High-Strength Steels (AHSS)
offer many advantages in e.g. automobile
construction:

light-weight construction;

enhanced crash safety.

AHSS have complex microstructure,
involving two or more phases, leading to
a complex macroscopic response
(anisotropy, kinematic hardening, & c.).
Significant sources of uncertainty
include:

microstructure morphology;

material properties of individual
phases.

↑ From www.bmw.de

↓ Micrograph of DP steel
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Optimal Certification of Multiphase Steels The Material Problem

Description of the Material Problem

We use a micro-macro approach: a microscopic BVP is solved at each
macroscopic Gauss point; the microscopic BVP is posed on a
statistically similar representative volume element (SSRVE).

For simplicity, we will assume that there is no error in this model
except for the statistical accuracy of the SSRVE.

Generalization → validation distance between computational code and
physical reality.

↑ Micrograph ↑ SSRVE ↑ Meshed SSRVE
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Optimal Certification of Multiphase Steels The Material Problem

Description of the Material Problem

Ferrite matrix phase with material parameters ymat.

Perlite or austenite inclusion phase with material parameters yinc.

Inclusion morphology described by a parameter γ.

Matrix-inclusion interface described by a collection of splines.
The number of splines, and their control points, are part of the
parameter γ.

By “statistical similarity”, we mean that the simulated microstructure
matches certain statistics of the real microstructure as seen in a
scanned micrograph:

known ranges/mean values for the parameters y and γ;
known range/mean value for volume fraction PV occupied by the
inclusion phase;
higher-order probability functions.
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Optimal Certification of Multiphase Steels The Reliability/Certification Problem

Reliability and Certification

For simplicity, we choose a single
scalar performance measure: the area
under the (macroscopic) stress-strain
curve in a uniaxial tension test:

G(γ,y) :=

∫ 1/10

0
σ(ǫ,γ,y) dǫ.

Given a performance threshold θ, we
want to certify that the probability of
failure

P[G(γ,y) ≤ θ]

is acceptably small, with respect to
the random variable (γ,y).

↑ Uniaxial test stress-strain curves

for several different realizations of

the microstructure parameters
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Optimal Certification of Multiphase Steels The Reliability/Certification Problem

Monte Carlo Certification

Why not simply certify the probability of failure using a Monte Carlo
method? That is, take a large number of samples, and see if the
proportion of samples that fail is acceptably small?

The problem is that if one wishes to certify that the probability of
failure is it most p (and it is actually that small), then this method
takes of the order of 1

p2
log 1

p samples — this clearly impractical if p is

small.

For seismic safety of nuclear power plants, p = 0.
Esteva (1970), Drenick, Wang, Yun & Philippacopoulos (1980)
In the aviation industry, the maximum acceptable probability of
catastrophic failure per flight hour is 10−9.
Soekkha (1997), Boeing (2010)
US environmental standards for acceptable increased lifetime chance of
developing cancer due to lifetime exposure to a substance: 10−6.
Mantel & Bryan (1961), Kelly (1993)
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Optimal Certification of Multiphase Steels Optimal Uncertainty Quantification

Optimal Uncertainty Quantification (OUQ)

The Optimal Uncertainty Quantification (OUQ) framework takes a
different approach: we try to give the sharpest bounds on the probability
of failure given what we know about the uncertainties.

Generalized system of interest: an unknown function G of random
inputs X, which have an unknown probability distribution P.

Write down all the information that you have about the uncertainties,
be they aleatoric or epistemic. E.g. for G(X1,X2)

X1 and X2 are independent;
X1 ∈ [0, 1], X2 ≥ 0;
G is smooth and ‖∇G‖ ≤ 2;
E[G(X1, X2)] = 3.

Now optimize (minimize and maximize) the probability of failure over
the collection A of all admissible scenarios (f, µ) that are consistent
with this information about (G,P) i.e. any (f, µ) ∈ A could be (G,P).
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Optimal Certification of Multiphase Steels Optimal Uncertainty Quantification

OUQ for the Material Problem

For simplicty, we’ll assume that our computational model is exact.

Let A denote the set of all measures µ on pairs (γ,y) that are
consistent with all given information about the real microstructure.

We ask, what are the minimum and maximum probabilities of failure

µ[G(γ,y) ≤ θ] with respect to µ ∈ A?

Hence, we obtain the double inequality

inf
µ∈A

µ[G(γ,y) ≤ θ] ≤ P[G(γ,y) ≤ θ] ≤ sup
µ∈A

µ[G(γ,y) ≤ θ],

which is the sharpest possible conservative bound on the probability
of failure given the information encoded in A.

Note that more information =⇒ more constraints =⇒ a smaller
feasible set A =⇒ sharper bounds.
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Optimal Certification of Multiphase Steels Optimal Uncertainty Quantification

A for the Material Problem

Bounds constraints for basic variables:

γ ∈ [γ−,γ+],

yinc ∈ [y−
inc,y

+
inc],

ymat ∈ [y−
mat,y

+
mat].

Bounds constraints for microstructure statistics:

volume fraction of inclusion phase: PV (γ,y) ∈ [P−
V ,P

+
V ].

Mean constraint for microstructure statistics:

volume fraction of inclusion phase: Eµ[PV (γ,y)] = PV .

Additional technical constraints:

the individual inclusion phases are not allowed to intersect each other.
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Optimal Certification of Multiphase Steels Optimal Uncertainty Quantification

Reduction of OUQ Problems

OUQ optimization problems are made tractable by reduction theorems like
the following: Owhadi & al. (2010)

Theorem

Suppose that A is given by n linear inequalities on generalized moments of

µ: for some h1, . . . , hn : Γ× Y → R,

A :=
{

µ
∣

∣Eµ[h1(γ,y)] ≤ 0, . . . ,Eµ[hn(γ,y)] ≤ 0
}

.

Let

A∆ :=







µ ∈ A

∣

∣

∣

∣

∣

∣

µ =
∑n

i=0 αiδ(γ
i
,y

i
)

for some αi ≥ 0, (γi,yi) ∈ Γ× Y,
∑n

i=0 αi = 1







.

Then

sup
µ∈A

µ[G(γ,y) ≤ θ] = sup
µ∈A∆

µ[G(γ,y) ≤ θ].
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Optimal Certification of Multiphase Steels Optimal Uncertainty Quantification

Reduction of OUQ Problems

The moral of the reduction theorem is

“If your random variables are constrained by n linear inequalities

on moments, then you can pretend that they’re discrete random

variables with at most n+ 1 values.”

This is great news, because such variables have a finite-dimensional
parametrization, and the probability of failure, mean performance
& c. are very easy to calculate.

In contrast to deterministic worst-case design, in which we seek a
single worst-case scenario (γ0,y0), we seek a worst-case ensemble of
scenarios (γ0,y0), . . . , (γn,yn) with probabilities α0, . . . , αn that
sum to unity and obey the given constraints in a statistical sense.
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Optimal Certification of Multiphase Steels Optimal Uncertainty Quantification

The Fruits of OUQ

The (approximate) extremizers of OUQ problems are very singular,
but they capture very important information: they illustrate the
critical vulnerabilities of the system given your current state of
knowledge.

Traditional UQ methods often make strong assumptions about the
structure of the problem (e.g. known priors, rapid spectral decay,
sub-Gaussian tails, . . . ) and it can be very difficult to “play” with
those assumptions to see if your conclusions are robust with respct to
them.

Contrarily, by placing information/assumptions/constraints at the
centre of the problem, OUQ is very amenable to this kind of
robustness analysis.
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Optimal Certification of Multiphase Steels Hypervelocity Impact Example

Hypervelocity Impact Example

We expect that the multiphase steel example with have similar
features to a hypervelocity impact example that has been studied
extensively using the OUQ method.

In this example, the variables are the speed of the incoming projectile,
the thickness of the target plate, and the obliquity of the impact.

Again, the constraints are bounds constraints on the three variables,
and a mean constraint (the mean perforation area); failure is
non-perforation.

In the following graphics, note that the key uncertainty is the plate
thickness, not velocity nor obliquity.
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Optimal Certification of Multiphase Steels Hypervelocity Impact Example

Convergence of Reduced Optimization Variables

Figure: Support of the 2× 2× 2-point measure µ at iteration 0.
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Optimal Certification of Multiphase Steels Hypervelocity Impact Example

Convergence of Reduced Optimization Variables

Figure: Support of the 2× 2× 2-point measure µ at iteration 150.
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Optimal Certification of Multiphase Steels Hypervelocity Impact Example

Convergence of Reduced Optimization Variables

Figure: Support of the 2× 2× 2-point measure µ at iteration 200.
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Optimal Certification of Multiphase Steels Hypervelocity Impact Example

Convergence of Reduced Optimization Variables

Figure: Support of the 2× 2× 2-point measure µ at iteration 1000.
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Optimal Certification of Multiphase Steels Hypervelocity Impact Example

Numerical Convergence

(a) oblquity positions (b) thickness positions (c) velocity positions

(d) obliquity masses (e) thickness masses (f) velocity masses
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Optimal Certification of Multiphase Steels Earthquake Engineering Example

Application to Earthquake Engineering

We consider the elastic response of a truss structure to a random
earthquake. The material properties of the structure are assumed to
be known, but could also be part of an extended OUQ analysis.

The key ingredient is the information on the ground motion
acceleration, which is the time convolution of the earthquake source s
with a (perhaps known, perhaps not) transfer function ψ. How to
represent these?

We assume that s is a sum of boxcar time impulses (step functions)
of indepenendent durations τmin ≤ τi ≤ τmax, independent unit
directions in R

3, and independent magnitudes 0 ≤ Xi ≤ amax — use
e.g. Esteva (1970)’s semi-empirical law

amax :=
a0e

λMRichter

(R0 +R)2
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Optimal Certification of Multiphase Steels Earthquake Engineering Example

Application to Earthquake Engineering

Similarly, express the transfer function ψ in a Fourier/wavelet
expansion with coefficients that are free to vary according to whatever
information is known — e.g. total duration, corellations between
nearby coefficients, & c.

Note that, in the absence of strong enough constraints, the OUQ
solution will coincide with deterministic worst-case analysis.

Drenick (1973): a seismic design based on critical excitation could be
“far too pessimistic to be practical”.

With more information (interaction among experts, A, and the OUQ
results), we identify the “worst” structures, earthquakes, and transfer
functions.
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Conclusions and Outlook Conclusions

Conclusions

Optimal UQ is a new UQ method that places information at the
centre of the UQ problem.

By doing so, we can obtain rigorous and sharp bounds on probabilities
of failure, in a way that is very robust with respect to rare events and
with easily perturbed assumptions.

The computation of these extrema is facilitated by powerful reduction
theorems. The (reduced) extrema carry important information about
the vulnerabilities of the system.
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Conclusions and Outlook Outlook

Outlook

How can statistical information of a higher order than the volume
fraction (e.g. 2-point probability functions, lineal path functions,
spectra) be incorporated, while keeping the optimization problems
relatively inexpensive?

Other OUQ applications now under investigation:

hypervelocity impact;
safety of structures under earthquakes;
inverse problems for random media;
data-on-demand vs legacy data.

UQ in general, and OUQ in particular, should be seen as a “wrapper”
to put around any problem of interest, especially high-consequence
ones.

Sullivan & al. (Caltech) Optimal UQ and Material Response 2nd Annual Caltech SMS 23 / 23


	Introduction
	Motivation
	Types of Uncertainty
	Multiphase Steel Example

	Optimal Certification of Multiphase Steels
	The Material Problem
	The Reliability/Certification Problem
	Optimal Uncertainty Quantification
	Hypervelocity Impact Example
	Earthquake Engineering Example

	Conclusions and Outlook
	Conclusions
	Outlook


