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Introduction Uncertainty Quantification

What is Uncertainty Quantification?

?
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Introduction Uncertainty Quantification

The Many Faces of Uncertainty Quantification

The Elephant in the Room: there is a growing consensus that UQ is
an essential component of objective science and decision-making.

The Blind Men and the Elephant: unfortunately, as it stands at the
moment, UQ has all the hallmarks of an ill-posed problem.

Problems

Certification

Extrapolation/Prediction

Reliability Estimation

Sensitivity Analysis

Verification

Validation

. . .

Methods

Analysis of Variance

Bayesian Methods

Error Bars

Latin Hypercube Sampling

(Quasi) Monte Carlo

Stochastic Collocation

. . .
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Introduction Uncertainty Quantification

Types of Uncertainty

Uncertainties are often divided into two types: epistemic and aleatoric
uncertainties.〈1〉

An epistemic uncertainty is one that stems from a fundamental lack
of knowledge — we don’t know the rules that govern the problem.

An aleatoric uncertainty is one that stems from intrinsic randomness
in the system — a “roll of the dice”.

The conventional wisdom is that aleatoric uncertainties are “nicer”
than epistemic uncertainties, because the powerful tools of probability
theory can be brought to bear.

〈1〉W. L. Oberkampf, T. G. Trucano & C. Hirsch (2004) “Verification, validation, and
predictive capability in computational engineering and physics” ASME Appl. Mech. Rev.

57(5):345–384.
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Introduction Uncertainty Quantification

Types of Uncertainty

However, on close inspection, many apparently aleatoric uncertainties
are epistemic: are you really sure that important parameter X is
uniformly distributed, or has sub-Gaussian tails?

Therefore, theoreticians and practitioners alike tend to be somewhat
skeptical of probabilistic methods — “probabilistic reliability studies
involve assumptions on the probability densities, whose knowledge
regarding relevant input quantities is central.”〈2〉

On the other hand, UQ methods based on deterministic worst-case
scenarios are oftentimes “too pessimistic to be practical.”〈3〉

〈2〉I. Elishakoff & M. Ohsaki (2010) Optimization and Anti-Optimization of Structures

Under Uncertainty. World Scientific, London.
〈3〉R. F. Drenick (1973) “Aseismic design by way of critical excitation” J. Eng. Mech.

Div., Am. Soc. Civ. Eng. 99:649–667.
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Introduction Uncertainty Quantification

Optimal Uncertainty Quantification

We propose a mathematical framework for UQ as an optimization
problem, which we call Optimal Uncertainty Quantification (OUQ), in
which knowledge (ǫπιστηµη) lies at the heart of the problem
formulation.

The development and application of OUQ to real, complex problems
is a collaborative interdisciplinary effort that requires expertise (and
stimulates developments) in

pure and applied mathematics, especially probability theory,
numerical optimization,
(massively) parallel computing,
the application area (e.g. biology, chemistry, economics, engineering,
geoscience, meteorology, physics, . . . ).
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Introduction Uncertainty Quantification

Optimal Uncertainty Quantification

In a nutshell, the OUQ viewpoint is the following:

OUQ is the business of computing optimal bounds on quantities

of interest that are themselves functions of unknown functions

and unknown probability measures, where “optimality” means

that those bounds are the sharpest ones possible given the

available information on those unknowns.

This paradigm is easiest to explain in the prototypical context of the
certification problem (bounding probabilities of failure). There will be
some remarks about other contexts at the end of the talk.
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Introduction Certification

The Certification Problem

Suppose that you are interested in a system of interest, G : X → R,
which is a real-valued function of some random inputs X ∈ X with
probability distribution P on X .

Some value θ ∈ R is a performance threshold: if G(X) ≤ θ, then the
system fails; if G(X) > θ, then the system succeeds.

You want to know the probability of failure

P[G(X) ≤ θ],

or at least to know if it exceeds some prescribed maximum acceptable
probability of failure ǫ — but you do not know G and P!

If you have some information about G and P, what are the best
rigorous lower and upper bounds that you can give on the probability
of failure using that information?

Sullivan & al. (Caltech) Optimal UQ Warwick, 18 March 2011 11 / 73



Introduction Certification

The Certification Problem

The challenge, then, is to bound P[G(X) ≤ θ] given some
information on or assumptions about G and P.

Optimality of the bounds is important — the following bounds are
true, but useless:

0 ≤ P[G(X) ≤ θ] ≤ 1.

Robustness of the bounds is also important — i.e. to know that the
bounds and any safe/unsafe decisions are stable with respect to
perturbations of the information/assumptions.
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Introduction Certification

The Importance of Optimality
and Robustness. Being overly
conservative may lead to huge
economic losses, but being overly
optimistic may lead to loss of life,
environmental damage & c.

Eyjafjallajökull, Iceland, 27 March 2010

Space Shuttle Columbia, 1 February 2003

Deepwater Horizon, 21 April 2010
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Introduction Certification

Standard UQ Methods

So, how can one show that P[G(X) ≤ θ] ≤ ǫ when G and P are only
imperfectly known?

Monte Carlo methods?
We need many independent P-distributed samples of G(X): näıve
MC needs O(ǫ−2 log ǫ−1) samples; QMC needs O(ǫ−1(log ǫ−1)dimX )
samples and G to be “well-behaved”.

Stochastic collocation methods?
We need a good representation for P and rapid decay of the
spectrum, and easy exercise of G.

Bayesian inference?
We need prior distributions in which we genuinely believe; also, if the
priors and “reality” disagree greatly, then it may take a very large
data set to “correct” the priors into posteriors that are close to
“reality”, which is vital if the important events are prior-rare.
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Introduction Certification

Standard UQ Methods

Each of these methods relies, implicitly or explicitly, on the validity of
certain assumptions in order to be applicable — or at least efficient.
This leads to three main difficulties:

the assumptions may not match the information about G and P;
the assumptions may vary from method to method, which makes fair
comparisons of different methods difficult;
the assumptions often cannot be easily perturbed.

Therefore, in formulating OUQ, we choose to place information on
and assumptions about G and P at the centre of the problem.

This goes one step beyond Babuška’s commandment “thou shalt
confess thy sins”: in OUQ, your sins precisely describe your problem!
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Optimal Uncertainty Quantification

Optimal Uncertainty
Quantification
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Optimal Uncertainty Quantification Formulating the Problem

What Problem Should You Solve?

You want to know about the probability of
failure

P[G(X) ≤ θ],

or at least if it’s greater than or less than ǫ.

You want to do this without ignoring or
distorting your existing information set, nor
making additional assumptions.

If you had access to The Ultimate Computer,
what problem would you try to solve?

Worry about computational feasibility later!

“Forty-Two?!”
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Optimal Uncertainty Quantification Formulating the Problem

Information / Assumptions

Write down all the information that you have about the system. For
example, this information might come from

physical laws;
expert opinion;
experimental data.

Let A denote the set of all pairs (f, µ) that are consistent with your
information about (G,P):

A ⊆

{
(f, µ)

∣∣∣∣
f : X → R is measurable, and
µ is a probability measure on X

}
.

All you know about reality is that (G,P) ∈ A; any (f, µ) ∈ A is an
admissible scenario for the unknown reality (G,P).

A is a huge space (probably infinite-dimensional and non-separable in
any example of interest); the need to explore it efficiently motivates
the reduction theorems that will come later.
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Optimal Uncertainty Quantification Formulating the Problem

The Optimal UQ Problem

With this notation, the Optimal UQ Problem is simply to find the greatest
lower bound and least upper bound on the probability of failure among all
admissible scenarios (f, µ) ∈ A. That is, we want to calculate

L(A) := inf
(f,µ)∈A

µ[f ≤ θ]

and
U(A) := sup

(f,µ)∈A
µ[f ≤ θ].

We then have the bounds

L(A) ≤ P[G(X) ≤ θ] ≤ U(A),

and any bounds other than these would be either (a) not sharp or (b) not
conservative.
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Optimal Uncertainty Quantification Formulating the Problem

Rigorous and Optimal Certification Criteria

Given a maximum acceptable probability of failure ǫ ∈ [0, 1], calculation of
L(A) and U(A) yields unambiguous, rigorous and optimal criteria for
certification of the system:

if U(A) ≤ ǫ, then the system is safe even in the worst possible case;

if L(A) > ǫ, then the system is unsafe even in the best possible case;

if L(A) ≤ ǫ < U(A), then there are some admissible scenarios under
which the system is safe and others under which it is unsafe: the
information encoded in A is insufficient to rigorously certify the
system, and more information must be sought.

The system is (temporarily) deemed unsafe due to lack of information.
More information yields a smaller admissible set A′ ⊆ A:

L(A) ≤ L(A′) ≤ P[G(X) ≤ θ] ≤ U(A′) ≤ U(A).
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Optimal Uncertainty Quantification Examples of OUQ Information Sets

Simple Mean and Range Constraints

A simple example of an admissible set A is the following one: our
information consists of a lower bound on the mean performance and an
upper bound on the diameter of the set of values that the system can take.

A :=




(f, µ)

∣∣∣∣∣∣∣∣

f : X → R is measurable,
µ is a probability measure on X ,

Eµ[f ] ≥ m
sup f − inf f ≤ D





.

This example can be solved exactly:

U(A) := sup
(f,µ)∈A

µ[f ≤ θ] =

(
1−

(m− θ)+
D

)

+

,

where, for t ∈ R, t+ := max{0, t}.
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Optimal Uncertainty Quantification Examples of OUQ Information Sets

More Complicated Mean and Range Constraints

On a product space X := X1 × · · · × XK , consider

AMcD :=





(f, µ)

∣∣∣∣∣∣∣∣∣∣

f : X → R,

Dk[f ] := sup |f(x1, . . . , xk, . . . , xK)−

− f(x1, . . . , x̃k, . . . , xK)| ≤ Dk,
µ = µ1 ⊗ · · · ⊗ µK on X ,

Eµ[f ] ≥ m





.

These are the assumptions of McDiarmid’s inequality〈4〉 (a.k.a. the
bounded differences inequality), which gives the upper bound

U(AMcD) ≤ exp

(
−
2(m− θ)2+∑K

k=1D
2
k

)
.

〈4〉C. McDiarmid (1989) “On the method of bounded differences” Surveys in

Combinatorics, 1989, Camb. Univ. Press, 148–188.
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Optimal Uncertainty Quantification Examples of OUQ Information Sets

Simple Legacy Data Constraints

You observe a function G : [0, 1]→ R on a fixed finite set
O = {z1, . . . , zN} ⊆ [0, 1]. You want to bound P[G(X) ≤ θ], and
know neither G nor the distribution P of X exactly.

Suppose that you do know

G|O (bearing in mind that O may not be P-distributed),
G is differentiable with |G′| ≤ 1 everywhere,
EP[G(X)] ≥ m.

The corresponding set of admissible scenarios is

A :=




(f, µ)

∣∣∣∣∣∣∣∣

f : [0, 1]→ R has Lipschitz constant 1,
f = G on O,

µ is a probability measure on [0, 1],
Eµ[f ] ≥ m





.
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Optimal Uncertainty Quantification Examples of OUQ Information Sets

Simple Legacy Data Constraints

b

(zn, G(zn))

b b

b

R

m

θ

0 1←(Unknown probability distribution P)→

Figure: Shaded, the feasible region for the graph of the unknown function G.
How much probability mass can be put on points with G-values below the red line
while still satisfying E[G] ≥ m?

Sullivan & al. (Caltech) Optimal UQ Warwick, 18 March 2011 24 / 73



Optimal Uncertainty Quantification Examples of OUQ Information Sets

More Complicated Legacy Data Constraints

More generally, the unknown function G may be a function of many
independent inputs of unknown distribution. Whatever information we
have about the smoothness of G becomes a constraint on the smoothness
of the admissible scenarios f :

A :=





(f, µ)

∣∣∣∣∣∣∣∣∣∣

f : X → R is measurable,
µ = µ1 ⊗ · · · ⊗ µK on X ,

f = G on O,
〈some smoothness conditions on f〉,

Eµ[f ] ≥ m





.
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Optimal Uncertainty Quantification Finite-Dimensional Reduction

Reduction of OUQ

OUQ problems are global, infinite-dimensional, non-convex,
highly-constrained (i.e. nasty!) optimization problems.

The non-convexity is a fact of life, but there are powerful reduction
theorems that allow a reduction to a search space of low dimension.

Instead of searching over all admissible probability measures µ, we
need only to search over those with a very simple “extremal”
structure: in the simplest case, these are just finite sums of point
masses (Dirac measures) on the input parameter space X .

That is, we can “pretend” that all the random inputs are discrete
random variables and just optimize over the possible values and
probabilities that those discrete variables might take.
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Optimal Uncertainty Quantification Finite-Dimensional Reduction

Reduction of OUQ — Linear Inequalities on Moments

Suppose that the admissible set A has the following form: all the
constraints on the measure µ are linear inequalities on generalized
moments. That is, for some given functions g′1, . . . , g

′
n′ : X → R,

A =



(f, µ)

∣∣∣∣∣∣

f : X → R such that
〈some conditions on f alone〉,
Eµ[g

′
1] ≤ 0, . . . , Eµ[g

′
n′ ] ≤ 0



 .

Theorem (General reduction theorem)

If X is a Suslin space, then L(A) = L(A∆) and U(A) = U(A∆), where

A∆ =

{
(f, µ) ∈ A

∣∣∣∣
µ is a sum of at most n′ + 1
weighted Dirac measures on X

}
.

Note: No constraints =⇒ conventional, deterministic worst-case analysis.
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Optimal Uncertainty Quantification Finite-Dimensional Reduction

Linear Inequalities on Moments

What constraints does the theorem permit?

Inequalities on probabilities of certain events, e.g.

µ[X ∈ E] S c or µ[f(X) ∈ E′] S c.

Inequalities on means and higher moments of X , f(X), or any other
measurable functions of X , e.g.

Eµ[〈ℓ,X〉] S c, Eµ[|f(X)|p] S c, Eµ[g(X)] S c or Vµ[g(X)] S c.

What constraints does the theorem not permit?

Relative entropy constraints, e.g. for probability measures µ on R that
are absolutely continuous with respect to Lebesgue measure λ, a
constraint on

DKL(µ‖λ) :=

∫

R

dµ

dλ
log

dµ

dλ
dλ.
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Optimal Uncertainty Quantification Finite-Dimensional Reduction

Reduction of OUQ — Independent Inputs

Suppose that we have K independent inputs, i.e. X = X1 × · · · × XK and

A =





(f, µ)

∣∣∣∣∣∣∣∣∣∣

f : X → R such that
〈some conditions on f alone〉,

µ = µ1 ⊗ · · · ⊗ µK ,
Eµ[g

′
1] ≤ 0, . . . , Eµ[g

′
n′ ] ≤ 0,

Eµk
[gki ] ≤ 0 for i = 1, . . . , nk and k = 1, . . . ,K





.

Theorem (Reduction for independent input parameters)

If X1, . . . , XK are Suslin spaces, then L(A) = L(A∆) and
U(A) = U(A∆), where

A∆ =

{
(f, µ) ∈ A

∣∣∣∣
µk is a sum of at most n′ + nk + 1
weighted Dirac measures on Xk

}
.
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Optimal Uncertainty Quantification Finite-Dimensional Reduction

Reduction of OUQ — Legacy Problem

Note that the reduction to finite convex combinations of Dirac
measures not only simplifies the search over admissible probability
measures µ, but also the search over admissible response functions f ,
because we now only care about the values of f on the (finite!)
support of the discrete measure µ.

So, for example, consider what this means for the legacy OUQ
problem with given data on O = {z1, . . . , zN}:

A :=




(f, µ)

∣∣∣∣∣∣∣∣

f : X → R is measurable,
µ = µ1 ⊗ · · · ⊗ µK on X = X1 × · · · × XK ,

f = G on O and Eµ[f ] ≥ m,
|f(x)− f(x′)| ≤ dL(x, x

′)




.

We now only care about the values of f on O and on a Hamming cube of
2K points {xε | ε ∈ {0, 1}

K} on which the measure µ lives.
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Optimal Uncertainty Quantification Finite-Dimensional Reduction

Reduction of OUQ — Legacy Problem

McShane’s extension theorem〈5〉 ensures that any partially-defined
Lipschitz function can be extended to a fully-defined one, and so

U(A) =































































































maximize:
∑

ε∈{0,1}K

(

K
∏

k=1

(pk)
1−εk (1− pk)

εk

)1(−∞,θ](yε);

among: x0, x1 ∈ X ; (Track the support of µ, with xk
ε := xk

εk
)

y : {0, 1}K → R; (Tracks the values of f on the support of µ)

p ∈ [0, 1]K ; (Tracks the weights of µ)

subject to: for all ε, ε′ ∈ {0, 1}K ,

|yε − yε′ | ≤ dL(xε, xε′);

for all ε ∈ {0, 1}K , n ∈ {1, . . . , N},

|yε − f(zn)| ≤ dL(xε, zn);

∑

ε∈{0,1}K

(

K
∏

k=1

(pk)
1−εk (1− pk)

εk

)

yε ≥ m.

〈5〉E. J. McShane (1934) “Extension of range of functions” Bull. Amer. Math. Soc.

40(12):837–842.
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Consequences of Optimal UQ

Consequences of Optimal UQ

Sullivan & al. (Caltech) Optimal UQ Warwick, 18 March 2011 32 / 73



Consequences of Optimal UQ Optimal Concentration Inequalities

McDiarmid’s Inequality

Consider the following admissible set of scenarios for (G,P), where G has
K independent inputs, mean performance E[G(X)] ≥ m, and the
maximum oscillation of G with respect to changes of its kth argument is
at most Dk:

AMcD :=





(f, µ)

∣∣∣∣∣∣∣∣∣∣

f : X → R,

Dk[f ] := sup |f(x1, . . . , xk, . . . , xK)−

− f(x1, . . . , x̃k, . . . , xK)| ≤ Dk,
µ = µ1 ⊗ · · · ⊗ µK on X = X1 × · · · × XK ,

Eµ[f ] ≥ m





.

In terms of OUQ, McDiarmid’s inequality is simply the upper bound

U(AMcD) ≤ exp

(
−2

(m− θ)2+∑K
k=1D

2
k

)
.
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Consequences of Optimal UQ Optimal Concentration Inequalities

Optimal McDiarmid Inequality

The reduction theorems mentioned before, along with other reduction
theorems that eliminate dependency upon the coordinate positions in
the parameter space X , yield finite-dimensional problems that can be
solved exactly to give optimal concentration inequalities with the
same assumptions as McDiarmid’s inequality.

By a combinatorial induction procedure, U(AMcD) can be calculated
for any K ∈ N.

Write a := (m− θ)+ for the mean performance margin.

Optimal McDiarmid, K = 1

U(AMcD) =

(
1−

a

D1

)

+
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Consequences of Optimal UQ Optimal Concentration Inequalities

Optimal McDiarmid Inequality

Optimal McDiarmid, K = 2

U(AMcD) =





0, if D1 +D2 ≤ a,

(D1 +D2 − a)
2

4D1D2
, if |D1 −D2| ≤ a ≤ D1 +D2,

(
1−

a

max{D1,D2}

)

+

, if 0 ≤ a ≤ |D1 −D2|.

Note that, when there is uncertainty about the response function G,
not all parameter sensitivities are created equal!

If the “sensitivity gap” between the largest parameter sensitivity D1

and the second-largest one D2 is big enough, then all the uncertainty
in the probability of failure is controlled by D1 and the performance
margin a := (m− θ)+.
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Consequences of Optimal UQ Optimal Concentration Inequalities

Other Optimal Concentration Inequalities

Similarly, one can consider the admissible set AHfd that corresponds
to the assumptions of Hoeffding’s inequality,〈6〉 in which the functions
f must be linear:

AHfd :=




(f, µ)

∣∣∣∣∣∣∣∣

f : RK → R is given by
f(x1, . . . , xK) = x1 + · · ·+ xK ,

µ supported on a cube with sides D1, . . . , DK ,
Eµ[f ] ≥ m





.

Interestingly, U(AMcD) = U(AHfd) for K = 1 and K = 2, but
U(AMcD) ≥ U(AHfd) for K = 3 (and the inequality can be strict).

〈6〉W. Hoeffding (1963) “Probability inequalities for sums of bounded random
variables” J. Amer. Statist. Assoc. 58(301):13–30.
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The OUQ Loop

The calculation of extremal probabilities of failure over a fixed
admissible set A is not the end of the game.

A strength of the OUQ viewpoint is that the assumptions/constraints
that determine A can be perturbed to see if the conclusions are
robust with respect to those changes.

Inconclusive results and sensitive assumptions can be selected for
further experimentation — and the OUQ process itself can be used to
identify the most informative experiments.
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Selection of New Experiments

Experimental Data
(Legacy / On-Demand)

Expert Judgement

Physical
Laws

Assumptions / Admissible Set, A

Extreme Scale Optimizer: Calculate
L(A) := inf{µ[f fails] | (f, µ) ∈ A}
U(A) := sup{µ[f fails] | (f, µ) ∈ A}

Certification
Process

Sensitivity / Robustness
Analysis w.r.t. A

De-Certify
(i.e. System is

Unsafe)

Cannot
Decide

Certify
(i.e. System is

Safe)
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Selection of the Best Next Experiment

Suppose that you are offered a choice of running just one very
expensive experiment from a collection E1, E2, . . . : each experiment
Ei will measure some functional Φi(G,P) to very high accuracy. E.g.

Φ1(f, µ) := Eµ[f ],

Φ2(f, µ) := µ[X ∈ A] for some set A ⊆ X ,

Φ3(f, µ) := D1[f ],

Φ4(f, µ) := f(x0) for some point x0 ∈ X .

Which experiment should you run? How can one objectively say that
one experiment is “better” or “worse” than another?

In the Optimal UQ framework, we can assess how predictive or
decisive a potential experiment may be in advance of performing it.
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Most Predictive Experiments

If your objective is to have an “accurate” prediction of P[G(X) ≤ θ]
in the sense that U(A)− L(A) is small, then proceed as follows:

Let AE,c denote those scenarios in A that are compatible with
obtaining outcome c from experiment E.

The experiment that is most predictive even in the worst case is
defined by a minimax criterion: we seek

E∗ ∈ argmin
experiments E

(
sup

outcomes c
(U(AE,c)−L(AE,c))

)
.

Again, the reduction theorems make this kind of OUQ problem
computationally tractable. It is a bigger problem than just calculating
L(A) and U(A), but the presumption is that computer time is
cheaper than experimental effort.

Alternatively, you may want an experiment that is likely to give a
decisive safe/unsafe verdict. . .
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Most Decisive Experiments

Let Jsafe,ǫ(Φi) be the closed interval in R spanned by the possible
values of Φi(f, µ) among all safe scenarios (f, µ) ∈ A, i.e. those with
µ[f ≤ θ] ≤ ǫ.

Let Junsafe,ǫ(Φi) be the closed interval in R spanned by the possible
values of Φi(f, µ) among all unsafe scenarios (f, µ) ∈ A, i.e. those
with µ[f ≤ θ] > ǫ.

Determination of these two intervals means solving four OUQ
problems.

What could you conclude if you were told Φi(G,P)?

Φi(G,P) ∈ Jsafe,ǫ(Φi) \ Junsafe,ǫ(Φi) =⇒ system is safe,

Φi(G,P) ∈ Junsafe,ǫ(Φi) \ Jsafe,ǫ(Φi) =⇒ system is unsafe,

Φi(G,P) ∈ Jsafe,ǫ(Φi) ∩ Junsafe,ǫ(Φi) =⇒ cannot decide,

Φi(G,P) /∈ Jsafe,ǫ(Φi) ∪ Junsafe,ǫ(Φi) =⇒ faulty assumptions!
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Most Decisive Experiments

R

Junsafe,ǫ(Φ1)

Jsafe,ǫ(Φ1)

R

Junsafe,ǫ(Φ2)

Jsafe,ǫ(Φ2)

R

Junsafe,ǫ(Φ3)

Jsafe,ǫ(Φ3)

R

Junsafe,ǫ(Φ4)

Jsafe,ǫ(Φ4)

Figure: Outcome intervals for four possible experiments E1, E2, E3 and E4. E1 is
perfectly decisive; E4 is completely indecisive; E2 and E3 are intermediate cases.
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Selection of Experimental Campaigns

This idea of experimental selection can be extended to plan several
experiments in advance, i.e. to plan campaigns of experiments.

This is a kind of infinite-dimensional Cluedo, played on spaces of
admissible scenarios, against our lack of perfect information about
reality, and made tractable by the reduction theorems.
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Relevant and Redundant Legacy Data

In many UQ applications, it is important to know which legacy data are
those that have any — or the most — relevance to the UQ problem at
hand. In this framework, the relevance of legacy data enters naturally in
terms of the constraints: relevant data points correspond to non-trivial
constraints.

Definition

Given a set of observations of G on O ⊆ X , say that an observation of G
at z∗ ∈ X is redundant on S ⊆ X with respect to O if, whenever the
constraints from G|O are satisfied on S, so is the constraint from G(z∗),
i.e.

for all n ∈ {1, . . . , N},
for all x ∈ S and y ∈ R,
|y −G(zn)| ≤ dL(x, zn)



 =⇒ |y −G(z∗)| ≤ dL(x, z∗).
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Relevant and Redundant Legacy Data

R

S X \ S

bb

b

Figure: The red data point on the right is redundant with respect to S and the
other data points in S.

Challenge: To develop algorithms that can efficiently find maximal
redundancy-free subsets of given data sets.
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Computational Examples
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Example 1: Hypervelocity Impact

Figure: Caltech’s Small Particle Hypervelocity Impact Range (SPHIR): a two-
stage light gas gun that launches 1–50mg projectiles at speeds of 2–10 km · s−1.
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Hypervelocity Impact: Surrogate Model

Experimentally-derived deterministic surrogate model for the perforation
area (in mm2), with three independent inputs:

plate thickness h ∈ X1 := [1.52, 2.67]mm = [60, 105]mil;

impact obliquity α ∈ X2 := [0, π6 ];

impact speed v ∈ X3 := [2.1, 2.8] km · s−1.

H(h, α, v) := 10.396

((
h

1.778

)0.476

(cosα)1.028 tanh

(
v

vbl
− 1

))0.468

+

The quantity vbl(h, α) given by

vbl(h, α) := 0.579

(
h

(cosα)0.448

)1.400

is called the ballistic limit, the impact speed below which no perforation
occurs. The failure event is non-perforation, i.e. [H = 0] ≡ [H ≤ 0].
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Hypervelocity Impact: Surrogate Model
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impactor footprint area

h = 1.52mm
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6

Figure: The surrogate perforation area model of the previous slide.
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Admissible scenarios, A U(A) Method

AMcD: independence, oscillation and mean ≤ 66.4% McD. ineq.
constraints (exact response H not given) = 43.7% Opt. McD.

A := {(f, µ) | f = H and Eµ[H] ∈ [5.5, 7.5]}
num
= 37.9% OUQ

A ∩

{
(f, µ)

∣∣∣∣
µ-median velocity

= 2.45 km · s−1

}
num
= 30.0% OUQ

A ∩
{
(f, µ)

∣∣µ-median obliquity = π
12

} num
= 36.5% OUQ

A ∩
{
(f, µ)

∣∣ obliquity = π
6 µ-a.s.

} num
= 28.0% OUQ

Warning!

It is tempting to say that some of these bounds are “sharper” than others.
Except for the first line, every one of these bounds is sharp given the
available information, modulo issues of numerical accuracy. In the case of
asymmetric information, think before describing a bound as “not sharp”.
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Numerical Convergence

Figure: Support of the 2× 2× 2-point measure µ at iteration 0.
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Numerical Convergence

Figure: Support of the 2× 2× 2-point measure µ at iteration 150.
Sullivan & al. (Caltech) Optimal UQ Warwick, 18 March 2011 51 / 73



Computational Examples Example 1: Hypervelocity Impact

Numerical Convergence

Figure: Support of the 2× 2× 2-point measure µ at iteration 200.
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Numerical Convergence

Figure: Support of the 2× 2× 2-point measure µ at iteration 1000.
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Numerical Convergence

Figure: Numerical convergence of the maximal probability of non-perforation.
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Numerical Convergence

(a) oblquity positions (b) thickness positions (c) velocity positions

(d) obliquity masses (e) thickness masses (f) velocity masses

Figure: Numerical convergence of the positions and probability masses of the
components of the 2× 2× 2 measure µ.
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Comments

Over these parameter ranges, the oscillations of H are:

Dh[H] = 8.86mm2, Dα[H] = 4.17mm2, Dv[H] = 7.20mm2,

so the “screening effects” apply in the optimal McDiarmid inequality.

The measures that (approximately) maximize the probability of failure
yield important information about the “key players” in the system.

For given mean perforation area, the worst-case probability of failure
is not controlled by the impact velocity or the oblquity, but by the
thickness of the plate.

The measure µ’s support collapses to

the two extremes of the thickness (h) range;
the lower extreme of the obliquity (α) range;
a single non-trivial value in the velocity (v) range.
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Example 2: Seismic Safety Certification

Now consider a more involved example: the safety of a truss structure
under an earthquake.

For simplicity, we consider a purely elastic response in a truss
structure composed of

N joints, with positions u(t) ∈ R
3N ;

J members, with axial strains y(t) ∈ R
J ;

member j has yield strength Sj , so the structure is safe if

min
j=1,...,J

(Sj − ‖yj‖∞) > 0,

and fails otherwise.
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Equations of Motion

The time evolution of the structure is governed by the second-order
ODE

Mü+ Cu̇+Ku = f ,

where M , C and K are the symmetric positive-definite 3N × 3N
mass, damping and stiffness matrices, and f collects any
externally-applied loads (e.g. wind loads).

We work instead with v := u− Tγ, i.e. u less the motion obtained by
rigid translation according to the ground motion:

Mv̈ + Cv̇ +Kv = f −MTγ̈.

Let L ∈ R
J×3N map v to the array of member strains, so that

yj = (Lv)j .
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Response Function

Given a history of ground motion acceleration γ̈, it is a
straightforward calculation in a nodal basis for the structure and using
hereditary integrals to solve for v and hence to check the safety of the
structure according to the safety criterion

min
j=1,...,J

(Sj − ‖yj‖∞) > 0.

This relationship is deterministic. Randomness enters the problem via
the ground motion acceleration, which we treat as a time
convolution:〈7〉

γ̈0 = ψ ⋆ s,

where s is the earthquake source and ψ the transfer function.

〈7〉S. Stein & M. Wysession (2002) An Introduction to Seismology, Earthquakes, and

Earth Structure. Wiley–Blackwell.
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Ground Motion Acceleration

A reasonable representation for s is as a sequence of I boxcar time
impulses of random but independent duration and amplitude:

s =

I∑

i=1

Xi1[∑i−1
k=1 τk,

∑i
k=1 τk]

with independent random Xi in [−amax, amax]
3 of mean 0 and τk in

[0, τ̄max] having mean E[τk] ∈ [τ̄1, τ̄2].

Similarly, we express the (unknown) transfer function with respect to
some basis of a discretization of the time interval of interest — say, of
dimension Q.

Reasonable values for all these parameters (amax, I, & c.) can be
found in the literature.〈8〉

〈8〉L. Esteva (1970) “Seismic risk and seismic design” in Seismic Design for Nuclear

Power Plants The MIT Press.
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Application of OUQ Reduction Theorems

Crucially, the OUQ reduction theorems apply to give a reduced OUQ
problem of dimension 18I +Q since

there are no constraints on the transfer function (and so the optimizer
will find the deterministically “worst” one — one Dirac mass), and
there are Q such deterministic components;
the mean constraints on the three components of each Xi generate a
need for four Dirac masses, and there are I of these;
the mean constraints on each τk generate need for two Dirac masses,
and there are I of these.

Sullivan & al. (Caltech) Optimal UQ Warwick, 18 March 2011 59 / 73



Computational Examples Example 2: Seismic Safety Certification

Critical Excitation

Without constraints, worst-case scenarios correspond to focusing the
energy of the earthquake in modes of resonances of the structure.

Without correlations in the ground motion these scenarios correspond
to rare events in which independent random variables must conspire
to strongly excite a specific resonance mode.

The lack of information on the transfer function ψ and the mean
values E[τk] permits scenarios characterized by strong correlations in
ground motion where the energy of the earthquake can be focused in
the above-mentioned modes of resonance.
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Example 3: Multiphase Steels

Advanced High-Strength Steels (AHSS)
offer many advantages in e.g. automobile
construction:

light-weight construction;

enhanced crash safety.

AHSS have complex microstructure,
involving two or more phases, leading to
a complex macroscopic response
(anisotropy, kinematic hardening, & c.).
Significant sources of uncertainty
include:

microstructure morphology;

material properties of individual
phases.

From www.bmw.de
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Description of the Material Problem

We use a micro-macro approach: a microscopic BVP is solved at each
macroscopic Gauss point; the microscopic BVP is posed on a
statistically similar representative volume element (SSRVE).

For simplicity, we will assume that there is no error in this model
except for the statistical accuracy of the SSRVE. More generally, we
would have to incorporate model error, perhaps by a “V&V distance”
between computational code and physical reality.

(a) Micrograph of DP steel (b) SSRVE with spline-
shaped inclusions

(c) SSRVE meshed for
FE calculation
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Description of the Material Problem

Ferrite matrix phase with material parameters ymat.

Perlite or austenite inclusion phase with material parameters yinc.

Inclusion morphology described by a parameter γ.

Matrix-inclusion interface described by a collection of splines.
The number of splines, and their control points, are part of the
parameter γ.

By “statistical similarity”, we mean that the simulated microstructure
matches certain statistics of the real microstructure as seen in a
scanned micrograph:

known ranges/mean values for the parameters y and γ;
known range/mean value for volume fraction PV occupied by the
inclusion phase;
higher-order probability functions.
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A for the Material Problem

Bounds constraints for basic variables:

γ ∈ [γ−,γ+],

yinc ∈ [y−
inc,y

+
inc],

ymat ∈ [y−
mat,y

+
mat].

Bounds constraints for microstructure statistics:

volume fraction of inclusion phase: PV (γ,y) ∈ [P−
V ,P

+
V ].

Mean constraint for microstructure statistics:

volume fraction of inclusion phase: Eµ[PV (γ,y)] = PV .

Additional technical constraints:

the individual inclusion phases are not allowed to intersect each other.
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A Typical Reliability/Certification Problem

For simplicity, we choose a single
scalar performance measure: the area
under the (macroscopic) stress-strain
curve in a uniaxial tension test:

G(γ,y) :=

∫ 1/10

0
σ(ǫ,γ,y) dǫ.

Given a performance threshold θ, we
want to certify that the probability of
failure

P[G(γ,y) ≤ θ]

is acceptably small, with respect to
the random variable (γ,y).

Uniaxial test stress-strain curves for

several different realizations of the

microstructure parameters
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Further Work and Conclusions
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Other UQ Problems

Certification — as in the bounding of probabilities of failure — is not
the only UQ problem.

However, certification appears to be a central and prototypical UQ
problem; many other UQ problems can be posed as certification
problems.

For example, verification and validation problems are very easily
transformed into certification problems.

“Verification deals with mathematics; validation deals with
physics”,〈9〉 but otherwise the two problems are very similar.

〈9〉P. J. Roache (1998) Verification and Validation in Computational Science and

Engineering. Hermosa Publ., Albuquerque.
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Verification

Verification of a computational model means showing that it is
“acceptably close” to the mathematical description of the processes
that it is supposed to model.

Let U denote the exact mathematical solution to the problem, and F
the computational model.

The verification problem is now to show that

P[‖U(X) − F (X)‖ ≤ θ] ≥ 1− ǫ

for suitable threshold values θ and ǫ, a suitable norm/distance ‖ · ‖,
and with P-distributed input parameters X taking values in some
verification domain.
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Validation

Validation of a computational model means showing that it is
“acceptably close” to the processes that it is supposed to model. (In
verification, the problem is mathematical; in validation, the problem is
physical.)

Let F denote the computational model and P the physical process.

The validation problem is now to show that

P[‖F (X) − P (X)‖ ≤ θ] ≥ 1− ǫ

for suitable threshold values θ and ǫ, a suitable norm/distance ‖ · ‖,
and with P-distributed input parameters X taking values in some
validation domain.
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Prediction

What is a “prediction” about some real-valued quantity of interest
G(X)? In a loose sense, it is an interval [a, b] ⊆ R (hopefully “as
small as possible”) such that

P[a ≤ G(X) ≤ b] ≈ 1.

In the OUQ paradigm, this can be made more precise: given a
collection of admissible scenarios A for (G,P), and ǫ > 0, we seek

sup

{
a ∈ R

∣∣∣∣ inf
(f,µ)∈A

µ[f ≥ a] ≥ 1−
ǫ

2

}
,

inf

{
b ∈ R

∣∣∣∣ inf
(f,µ)∈A

µ[f ≤ b] ≥ 1−
ǫ

2

}
.
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Optimal UQ with Random Sample Data

Another area of research is what it means to give optimal bounds on
the probability of failure when the information is not just
deterministic, but also comes from random sample data.

If we are told that we will observe a realization D of sample data
from a space D (e.g. ten IID samples), we seek an “upper-bounder”
Ψ: D → [0, 1] such that

inf
(f,µ)∈A

µD
[
Ψ(D) ≥ µ[f ≤ θ]

]
≥ 1− ǫ,

and we want Ψ to be “minimal” in some sense.

This is a very delicate issue, with great scope for supplier–client
conflict and the classical paradoxes of voting theory (e.g. Arrow’s
theorem) to intrude.

However, it does appear that there is a connection between OUQ
with sample data and the notion of a Uniformly Most Powerful
hypothesis test.
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Further Work and Conclusions Conclusions

Conclusions

UQ is an essential component of modern science, with many
high-consequence applications. However, there is no established
consensus on how to formally pose “the UQ problem”, nor a common
language in which to communicate and quantitatively compare UQ
methods and results.

OUQ is an opening gambit. OUQ is not just an effort to provide
answers, but an effort to well-pose the question: OUQ is the
challenge of optimally bounding functions of unknown responses and
unknown probabilities, given some information about them.

A key feature is that the OUQ viewpoint explicitly requires the user to
explicitly state all the assumptions in operation — once listed, they
can be perturbed to see if the answers are robust.

Although the optimization problems involved are large, in many cases
of interest, their dimension can be substantially reduced.
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Optimization calculations performed using mystic:

http://dev.danse.us/trac/mystic
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