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Introduction What is UQ?

What is Uncertainty Quantification?

In rough terms, Uncertainty Quantification (UQ) means

reasoning under uncertainty about physically-motivated problems

rigorously quantifying the uncertainties involved

using mathematical, probabilistic and computational tools.

The conventional wisdom about uncertainties is that

aleatoric uncertainties — which stem from the operation of random
chance and can be treated using the methods of probability theory —
are nice, and

epistemic uncertainties — which stem from lack of knowledge and are
not probabilistic in nature — are nasty.
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Introduction Motivational UQ Problems

Motivational UQ Problems (1)

Random PDEs — Pressure and Transport in Porous Media

Consider the following PDE for a pressure field u on U ⊆ Rn in a medium
with porosity described by κ:

−∇ ·
(
κ(x)∇u(x)

)
= f(x), + boundary conditions.

For a given point x0 ∈ U and threshold pressure u0 ∈ R, . . .

Given κ and f , is it true that u(x0) ≥ u0?

What is P[u(x0) ≥ u0] if the probability distribution P associated to
random κ, f and boundary conditions is known?

What if P is only partially known? What if the space of possibilities
for P is infinite-dimensional?

How do the answers depend upon the features of κ across various
scales? Does the microstructure even matter at all?
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Introduction Motivational UQ Problems

Motivational UQ Problems (2)

Seismic Safety

Will a given structure collapse under a
given earthquake ground motion?

What is the probability of collapse
under earthquakes that are randomly
distributed according to some known
probability distribution?

What if that probability distribution is
only partially known? What if it is
known, not up to a few real
parameters, but only up to an
infinite-dimensional family?
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Introduction Motivational UQ Problems

Motivational UQ Problems (3)

Imperfectly-Known Response

Consider a metric space X and a 1-Lipschitz function G : X → R. Given a
measurable event E ⊆ R, . . .

For some given x ∈ X , is G(x) ∈ E?

When X is distributed according to some given P ∈ P(X ), what is
P[G(X) ∈ E]?

What if P is incompletely specified? What if, in addition, G is
incompletely specified, e.g. because it is known only on some O ⊆ X ?

N.B. If G is not uniquely specified, then neither is the set

{x ∈ X | G(x) ∈ E}.
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Introduction Motivational UQ Problems

Common Themes — Motivation for OUQ

Such problems are relatively simple to address if the probability
distributions, response functions, & c. are perfectly known, or if the
uncertainties are finite-dimensional parametric uncertainties.
Methods for dealing with them usually depend upon the validity of
specific assumptions for their applicability or efficiency. E.g.

{Quasi-, Markov Chain} Monte Carlo. Need to know the
distribution and be able to draw many samples from it.
Stochastic Collocation Methods. Need to pick a distribution for the
expansion, and require that the randomness and response function have
good spectral properties w.r.t. that basis.

However, in reality, these objects are usually unknown, or incompletely
known, and the uncertainties are infinite-dimensional in nature.

The Fear

Even with nice assumptions, probabilistic calculations are harder and more
involved than deterministic ones, so infinite-dimensional families of
probabilistic problems sound like they would be nearly impossible.
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Introduction Motivational UQ Problems

The Idea of Optimal Uncertainty Quantification

If In Doubt, Optimize!

To obtain robust bounds on output
uncertainties given parametric
input uncertainties, just optimize
w.r.t. those uncertain parameters.

The OUQ framework is the
extension of this idea to the
infinite-dimensional regime of
incompletely specified probability
distributions and response
functions.

And, surprisingly, the answers are
both simpler and less trivial than
you might expect.

bC

bC

minimize w.r.t. inputs x ∈ X

maximize

bC

bC

x ∈ X

G(x)

Figure: Optimizing G(x) over
x ∈ X yields deterministic
worst- and best-case outcomes.
What if the distribution of the
inputs is only partially known?
(I.e. non-parametric epistemic
uncertainty.)
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Optimal Uncertainty Quantification (OUQ)

Optimal Uncertainty Quantification

The Problem: Optimal Bounds

OUQ: Formulation, Reduction and Implementation
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Optimal Uncertainty Quantification (OUQ) Problem Description

Problem Setting

The Challenge in General Terms

Give optimal bounds on some quantity of interest EX∼P[q(X,G(X))],
which depends on some response function G : X → Y with
P-distributed inputs X in X , given only incomplete information about
the pair (G,P).

Archetypical example: to bound P[G(X) ≤ 0], where the event
[G(X) ≤ 0] corresponds to failure of some kind.

Why Optimality?

We seek bounds that are both rigorous and optimal in order to be
most informative in a decision-making context.

The bound
0 ≤ P[G(X) ≤ 0] ≤ 1

is rigorous, but usually not optimal, and hardly informative!
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Optimal Uncertainty Quantification (OUQ) Formulation of OUQ Problems

Formulation of OUQ Problems

We want to know about the quantity of interest

EX∼P[q(X,G(X))]

when the reality (G,P) is only imperfectly known.

The key step in the Optimal Uncertainty Quantification approach is
to specify a feasible set of admissible scenarios (g, µ) that could be
(G,P) according to the available information:

A :=



(g, µ)

∣∣∣∣∣∣

(g : X → Y, µ ∈ P(X )) is consistent with
all given information about the real system (G,P)
(e.g. legacy data, first principles, expert judgement)



 .

A encodes everything that we know about the “reality” (G,P).

A priori, all we know about reality is that (G,P) ∈ A; we have no
idea exactly which (g, µ) in A is actually (G,P). No (g, µ) ∈ A is
“more likely” or “less likely” to be (G,P) than any other.
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Optimal Uncertainty Quantification (OUQ) Formulation of OUQ Problems

Formulation of OUQ Problems

A :=



(g, µ)

∣∣∣∣∣∣

(g : X → Y, µ ∈ P(X )) is consistent with
all given information about the real system (G,P)
(e.g. legacy data, first principles, expert judgement)



 .

Optimal bounds on the quantity of interest EX∼P[q(X,G(X))]
(optimal w.r.t. the information encoded in A) are found by
minimizing/maximizing EX∼µ[q(X, g(X))] over all admissible
scenarios (g, µ) ∈ A:

L(A) ≤ EX∼P[q(X,G(X))] ≤ U(A),

where L(A) and U(A) are defined by the minimization and
maximization problems

L(A) := inf
(g,µ)∈A

EX∼µ[q(X, g(X))],

U(A) := sup
(g,µ)∈A

EX∼µ[q(X, g(X))].
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Optimal Uncertainty Quantification (OUQ) Formulation of OUQ Problems

OUQ in Context

When the quantity of interest is the probability of some fixed event E
(i.e. the response function g = G is fixed and known), L(A) and
U(A) are the optimal lower and upper probabilities of E w.r.t. the
information encoded in A.

Notions of imprecise probability have a long history stretching back to
Boole (1854) and Keynes (1921), with more recent and
comprehensive foundations laid out by Kuznetsov (1991), Walley
(1991), and Weichselberger (2000).

In the Bayesian world, such approaches are sometimes known as
robust Bayesian inference, and in the decision analysis world,
distributionally robust decision analysis / optimization.

The idea is an old one, but computability has always been the major
hurdle: lots of effort has been spent on representation theorems for
various classes of measures A.
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Optimal Uncertainty Quantification (OUQ) Reduction of OUQ Problems

Reduction of OUQ Problems — LP Analogy

Dimensional Reduction

A priori, OUQ problems are
infinite-dimensional, non-convex,
highly-constrained, global
optimization problems.

However, they can be reduced
to equivalent finite-dimensional
problems in which the
optimization is over the
extremal scenarios of A.

The dimension of the reduced
problem is proportional to the
number of probabilistic
inequalities that describe A.

bC

bC bC

bC

bC

bC bC

bC

bC bC

bC

A

ex(A)

Figure: Just as a linear program
finds its extreme value at the
extremal points of a convex
domain in Rn, OUQ problems
reduce to searches over finite-
dimensional families of extremal
scenarios.
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Optimal Uncertainty Quantification (OUQ) Reduction of OUQ Problems

Reduction of OUQ Problems — Theorem

Theorem (Reduction for moment and independence constraints)

Suppose that X := X1 × · · · × XK is a product of Radon spaces. Let

A :=





(g, µ)

∣∣∣∣∣∣∣∣∣∣∣

g : X → R is measurable, µ = µ1 ⊗ · · · ⊗ µK ∈
⊗K

k=1 P(Xk);
〈any conditions on g alone〉; and, for each g,

for some measurable functions ϕi : X → R and ϕ
(k)
i : Xk → R,

EX∼µ

[
ϕi(X)

]
≤ 0 for i = 1, . . . , n0,

EXk∼µk

[
ϕ
(k)
i (Xk)

]
≤ 0 for i = 1, . . . , nk and k = 1, . . . ,K





A∆ :=

{
(g, µ) ∈ A

∣∣∣∣
µk is a convex combination of at most

Nk := 1 + n0 + nk Dirac measures on Xk

}
⊆ A.

Then

dim(A∆) ≤

K∑

k=1

Nk(1 + dim(Xk)) +

K∏

k=1

Nk −K,

L(A) = L(A∆) and U(A) = U(A∆).
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Optimal Uncertainty Quantification (OUQ) Reduction of OUQ Problems

Reduction of OUQ Problems — Sketch Proof

Proof.

First consider K = 1, and fix g : X → R.

By definition, since X is a Radon space, all probability measures on X
are inner regular, and so the set ex(AΦ) of extreme points of

AΦ :=
{
µ ∈ P(X )

∣∣EX∼µ[ϕ1(X)] ≤ 0, . . . ,EX∼µ[ϕn(X)]
}

consists of the convex combinations of at most 1 + n Dirac masses.

The map µ 7→ EX∼µ[q(X, g(X))] is measure affine in the sense of
Winkler (1988) — it satisfies a barycentric Choquet-type formula —
and so its extreme values over AΦ and ex(AΦ) are the same.

Now vary g — still the same number of Dirac masses regardless of g.

For K > 1, apply the previous argument componentwise using
Fubini’s theorem, allowing an error of ε/K in each marginal.
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Optimal Uncertainty Quantification (OUQ) Reduction of OUQ Problems

Reduction of OUQ Problems — Interpretation

The reduction theorem tells us two very important things. It says that,
from the perspective of bounding a chosen quantity of interest,

reasonably general infinite-dimensional feasible sets A are equivalent
to finite-dimensional subsets A∆ — and so we can numerically
optimize over that finite-dimensional set; and

the probability measures in A∆ are very simple (products of finite
convex combinations of Dirac point masses), so integration against a
measure µ in A∆ is easy — no need to worry about e.g. MCMC
integration against a “general” measure.

Depending on the specific structure of A, there are often additional layers
of reduction theorems. E.g. in the McDiarmid example later on, a theorem
enables us to “forget” the coordinates in the input spaces.
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Optimal Concentration Inequalities and PDEs

Examples I

Optimal Concentration Inequalities: Parameter (In)Sensitivity

OUQ and Random/Multiscale PDEs
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Optimal Concentration Inequalities and PDEs Optimal Concentration Inequalities

Classical Example: Markov’s Inequality

Theorem (Markov’s Inequality)

For any non-negative random variable X with given mean E[X] = m ≥ 0,
for any t ≥ m,

P[X ≥ t] ≤
m

t
.

Or, in OUQ terms,

AMrkv := {µ ∈ P([0,+∞)) | EX∼µ[X] = m},

U(AMrkv) := sup
µ∈A

µ[X ≥ t] ≤ m
t
.

In fact, U(AMrkv) =
m
t
, and the probability distribution µ that attains

this extreme value is

µ =
(
1− m

t

)
δ0 +

m
t
δt.
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Optimal Concentration Inequalities and PDEs Optimal Concentration Inequalities

McDiarmid’s Inequality

Consider the admissible set corresponding to the assumptions of
McDiarmid’s inequality (a.k.a. the bounded differences inequality):

AMcD =




(g, µ)

∣∣∣∣∣∣∣∣

g : X1 × · · · × XK → R,

µ =
⊗K

k=1 µk, (i.e. X1, . . . , XK independent)
EX∼µ[g(X)] ≥ m ≥ 0,

osck(g) ≤ Dk for each k ∈ {1, . . . ,K}





,

with componentwise oscillations/global sensitivities defined by

osck(g) := sup

{
|g(x) − g(x′)|

∣∣∣∣
x, x′ ∈ X1 × · · · × XK ,

xi = x′i for i 6= k

}
.

Theorem (McDiarmid’s Inequality, 1988)

U(AMcD) := sup
(g,µ)∈AMcD

µ[g(X) ≤ 0] ≤ exp

(
−

2m2

∑K
k=1D

2
k

)
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Optimal Concentration Inequalities and PDEs Optimal Concentration Inequalities

Optimal McDiarmid — Non-Propagation

Theorem

For K = 1,

U(AMcD) =




0, if D1 ≤ m,

1−
m

D1
, if 0 ≤ m ≤ D1.

For K = 2,

U(AMcD) =





0, if D1 +D2 ≤ m,

(D1 +D2 −m)2

4D1D2
, if |D1 −D2| ≤ m ≤ D1 +D2,

1−
m

max{D1,D2}
, if 0 ≤ m ≤ |D1 −D2|.

There are similar explicit formulae for K = 3 (involving roots of cubic
polynomials) and higher K.
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Optimal Concentration Inequalities and PDEs Optimal Concentration Inequalities

Optimal McDiarmid — Non-Propagation

Theorem

For K = 2,

U(AMcD) = 1−
m

max{D1,D2}
, if 0 ≤ m ≤ |D1 −D2|.

If the “sensitivity gap” |D1 −D2| is large enough relative to the
performance margin m, then max{D1,D2} dominates all the
uncertainty about P[G(X) ≤ 0].

The smaller of D1 and D2 could be reduced to zero without
improving the worst-case bound on the probability of failure.

Corollary for Multiscale Systems

In the presence of uncertainty about input probability distributions and the
input-output relationship, there can be screening effects and information
can fail to propagate.
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Optimal Concentration Inequalities and PDEs Deviation Inequalities for Random/Multiscale PDEs

Example: Random/Multiscale PDEs

Consider the following PDE for a pressure field u on U ⊆ Rn in a
medium with porosity field κ:

−∇ ·
(
κ(x)∇u(x)

)
= f(x),

with appropriate boundary conditions.

When the probability distribution P of κ and f is known, such a
stochastic PDE is a benchmark application for stochastic expansion
methods.

We seek the least upper bound on the probability that the
log-pressure at x0 ∈ U exceeds its mean by more than a:

P
[
log u(x0) ≥ E[log u(x0)] + a

]
.

The OUQ-McDiarmid example can be applied in two ways here: the
relative effects of κ and f ; and the relative effects of micro and macro
features of κ.
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Optimal Concentration Inequalities and PDEs Deviation Inequalities for Random/Multiscale PDEs

Example: Random/Multiscale PDEs

Setting I: Independent Porosity and Source Terms

Given D1,D2 ≥ 0, and fields K,F ∈ L∞(U) with

ess inf
U

K > 0, F ≥ 0,

∫

U

F (x) dx > 0,

let

A :=



µ

∣∣∣∣∣∣

under µ, the fields κ and f are independent and, µ-a.s.
K(x) ≤ κ(x) ≤ eD1K(x),
F (x) ≤ f(x) ≤ eD2F (x)



 .

Theorem

U(A) = U(AMcD). In particular, if |D1 −D2| ≥ a, then the worst-case

bound on P[log u(x0) ≥ E[log u(x0)] + a] is independent of min{D1,D2}.
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Optimal Concentration Inequalities and PDEs Deviation Inequalities for Random/Multiscale PDEs

Example: Random/Multiscale PDEs

Setting II: Independent Porosity Micro- and Macrostructure

Given D1,D2 ≥ 0, and fields K1,K2 : U → R such that K1 is smooth and
uniformly elliptic in U , and K2 ∈ L∞(U) is uniformly elliptic in U with
spatial period δ ≪ 1, let

A :=





µ

∣∣∣∣∣∣∣∣∣∣∣∣

κ = κ1κ2,
under µ, the fields κ1 and κ2 are independent and, µ-a.s.

‖∇κ1‖L∞ ≤ eD1‖∇K1‖L∞ ,
K1(x) ≤ κ1(x) ≤ eD1K1(x),

κ2 is spatially periodic with period δ,
K2(x) ≤ κ2(x) ≤ eD2K2(x)





.

Theorem

U(A) = U(AMcD). In particular, if |D1 −D2| ≥ a, then the worst-case

bound on P[log u(x0) ≥ E[log u(x0)] + a] is independent of min{D1,D2}.
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Optimal Concentration Inequalities and PDEs Optimal Concentration Inequalities II

Optimal Hoeffding and the Effects of Nonlinearity

Similarly, one can consider the admissible set AHfd that corresponds
to the assumptions of Hoeffding’s inequality, which bounds deviation
probabilities of sums of independent bounded random variables:

AHfd :=




(g, µ)

∣∣∣∣∣∣∣∣

g : RK → R given by
g(x1, . . . , xK) := x1 + · · · + xK ,

µ = µ1 ⊗ · · · ⊗ µK supported on a cube of
side lengths D1, . . . ,DK , and EX∼µ[g(X)] ≥ m ≥ 0





.

Hoeffding’s inequality is the bound

U(AHfd) ≤ exp

(
−

2m2

∑K
k=1D

2
k

)
.

Interestingly, U(AMcD) = U(AHfd) for K = 1 and K = 2, but
U(AMcD) ≥ U(AHfd) for K = 3, and the inequality can be strict.
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OUQ Using Legacy Data

Examples II

OUQ Using Legacy Data

Redundant and Non-Binding Data
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OUQ Using Legacy Data Problem Description

The Legacy UQ (Certification) Challenge

Another illustrative and accessible example of OUQ in action is furnished
by the problem of UQ with legacy data.

General Challenge

To determine if a system of interest will “fail” only with acceptably small
probability, given observations of the system response on some subset O of
the parameter space X and nowhere else.

Illustrative Example

To bound P[G(X) ≤ 0], where G : [0, 1] → R is a function known only on
some subset O ⊆ [0, 1], and the probability distribution P of X on [0, 1] is
also only partially known.
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OUQ Using Legacy Data Problem Description

The Effect of Information

What can be said about P[G(X) ≤ 0] if all that is known are the values of
G on O ⊆ [0, 1]?

b (z1, G(z1))

b (z2, G(z2))

b (z3, G(z3))

0 0.25 0.50 0.75 1.00
0

0.5

1.0

success ↑
failure ↓

Sharpest Possible Answer. . .

With so little information, the only rigorous bounds that can be given are
the trivial ones: 0 ≤ P[G(X) ≤ 0] ≤ 1.
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OUQ Using Legacy Data Problem Description

The Effect of Information

What can be said about P[G(X) ≤ 0] if all that is known are the values of
G on O ⊆ [0, 1], and that |G(x) −G(x′)| ≤ L|x− x′|?

b

slope ±L

b

b

0 0.25 0.50 0.75 1.00
0

0.5

1.0

success ↑
failure ↓

Sharpest Possible Answer. . .

. . . we might discover that P[G(X) ≤ 0] = 0 or = 1, but otherwise no
improvement on the trivial bound 0 ≤ P[G(X) ≤ 0] ≤ 1.
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OUQ Using Legacy Data Problem Description

The Effect of Information

What can be said about P[G(X) ≤ 0] if all that is known are the values of
G on O ⊆ [0, 1], that |G(x)−G(x′)| ≤ L|x−x′|, and that E[G(X)] ≥ m?

b

b

b

m

0 0.25 0.50 0.75 1.00
0

0.5

1.0

success ↑
failure ↓

Sharpest Possible Answer. . .

. . . is non-trivial, and can be found using the optimization techniques of
the OUQ framework.

Sullivan & al. (Caltech) Optimal Uncertainty Quantification Warwick, 12–16 Dec. 2011 30 / 58



OUQ Using Legacy Data Problem Description

The Effect of Information

What can be said about P[G(X) ≤ 0] if all that is known are the values of
G on O ⊆ [0, 1], that |G(x)−G(x′)| ≤ L|x−x′|, and that E[G(X)] ≥ m?

b

b

b

m

a possible P

a possible G

0 0.25 0.50 0.75 1.00
0

0.5

1.0

success ↑
failure ↓

Sharpest Possible Answer. . .

. . . is non-trivial, and can be found using the optimization techniques of
the OUQ framework.
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OUQ Using Legacy Data Problem Description

Problem Formulation

For k ∈ {1, . . . ,K}, metric spaces (Xk, dk) and independent
Xk-valued random variables Xk.

Fix constants L1, . . . , LK > 0 and endow X := X1 × · · · × XK with
the metric

dL(x, x
′) :=

K∑

k=1

Lkdk(xk, x
′
k).

Knowledge to Encode in A

G is L-Lipschitz (i.e. has Lipschitz constant 1 w.r.t. the metric dL);

Observed data: the restriction G|O of the real response function
G : X → R to some subset O ⊆ X ;

Pairwise independence: Xk ⊥⊥Xℓ for k 6= ℓ;

Mean constraint: EX∼P[G(X)] ≥ m.
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OUQ Using Legacy Data Problem Description

Problem Formulation

What is the admissible set A in this case?

A :=



(g, µ)

∣∣∣∣∣∣

µ =
⊗K

k=1 µk ∈
⊗K

k=1P(Xk) ⊆ P(X ),
g : X → R is L-Lipschitz,

g = G on O, and EX∼µ[g(X)] ≥ m



 .

In other words, any (g, µ) for which µ is a product measure and g is
L-Lipschitz, agrees with the legacy data, and has the right mean under µ
could be (G,P). The reduced admissible set, over which the quantity of
interest has the same extreme values, is

A∆ :=





(g, µ)

∣∣∣∣∣∣∣∣∣∣

µ =
⊗K

k=1 µk ∈
⊗K

k=1P(Xk) ⊆ P(X ),
for some x0, x1 ∈ X and p ∈ [0, 1]K ,

µk = pkδxk

0
+ (1− pk)δxk

1
,

g : O ∪ C(x0, x1)→ R is L-Lipschitz,
g = G on O, and EX∼µ[g(X)] ≥ m





.
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OUQ Using Legacy Data Problem Description

The Reduced Problem (K = 1)

The original problem entails optimizing over an infinite-dimensional
collection of (g, µ) that could be (G,P). In the reduced problem, we only
have to move around and re-weight two Dirac measures (point masses)
and the values of g over those two points.

infinite-dimensional problem equivalent 5-dimensional problem!

b

b

b

m

µ = a possible P

g = a possible G

(g, µ) ∈ A

0 0.25 0.50 0.75 1.00
0

0.5

1.0

success ↑
failure ↓
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OUQ Using Legacy Data Problem Description

The Reduced Problem (K ∈ N)

b

data point/
observation
(z,G(z))

b b

b

bC bC

bC bC

bC bC

bC bC

x000 x100

x001

x011

x110

x111

µµ

R

X

bC bC bC bC bC bC bC bC

bC

bC
bC

bC
bC

bC bC
bC

(x010, y010), with probability mass p1 · (1− p2) · p3

Figure: In the general case, the reduced probability measure µ is supported on the
2× 2× · · · × 2 discrete (Hamming) cube C(x0, x1) spanned by x0, x1 ∈ X (the
green dots). The blue dots show some feasible values for G over the support of
the measure µ. The reduced problem has dimension 3K + 2K .

Sullivan & al. (Caltech) Optimal Uncertainty Quantification Warwick, 12–16 Dec. 2011 34 / 58



OUQ Using Legacy Data Critical Data

One Data Point

The case of a single observation can be solved explicitly.

Suppose that you observe one input-output pair of a function
G : [0, 1]→ R with Lipschitz constant L.

You know (z,G(z)) — assume that z ∈ [0, 12 ] and G(z) > 0.

Four cases for the least upper bound on the probability of failure
given L, (z,G(z)), and that E[G(X)] ≥ m:

U(A) =





(
1− m+

L−(Lz−G(z))

)
+
, if G(z) ≤ Lz,

(
1− m+

L−(Lz+G(z))

)
+
, if Lz < G(z) ≤ L|12 − z|,

(
1− 2m+

L+(G(z)−Lz)

)
+
, if L|12 − z| < G(z) ≤ L|1− 3z|,

(
1− m+

Lz+G(z)

)
+
, if G(z) > Lmax{z, 1 − 3z}.
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OUQ Using Legacy Data Critical Data

Critical Data

The intuition that “an observation (z,G(z)) with G(z) large =⇒ failure
is less likely” is more-or-less valid, but in a rather interesting way:

0 0.5 1.0
0

0.5

1.0

G(z)

z

Figure: Schematic contour plot and to-scale surface plot of the least upper bound
on the probability of failure, as a function of the observed data point (z,G(z)).
There are jump discontinuities across the orange lines.
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OUQ Using Legacy Data Critical Data

Critical Data

b

0 0.5 1.0
0
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1.0

m

(z, G(z))

success ↑
failure ↓

(a) “Subcritical” data point:
probability of failure is high.

b

0 0.5 1.0
0

0.5

1.0

m

(z, G(z))

(b) “Supercritical” data point:
probability of failure is lower.

Figure: Construction of the least upper bound on P[G(X) ≤ 0] given one
observation in two of the four cases. In each case shown, the probability of failure

is the probability mass at x0, which is given by
(
1− m+

y1

)

+
.
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OUQ Using Legacy Data Hypervelocity Impact Example

Medium-Dimensional Example

Legacy data = 32 data points (steel-on-aluminium shots A48–A81,
less two mis-fires) from summer 2010 at Caltech’s SPHIR facility:

X = (h, α, v) ∈ X := [0.062, 0.125] in × [0, 30] deg × [2300, 3200]m/s.

Output G(h, α, v) = the induced perforation area in mm2; the data
set contains results between 6.31mm2 and 15.36mm2.

Failure event is [G(h, α, v) ≤ θ], for various values of θ.

Constrain the mean perf. area: E[G(h, α, v)] ≥ m := 11.0mm2.

Modified Lipschitz constraint (multi-valued data):

L =

(
175.0

in
,
0.075

deg
,
0.1

m/s

)
mm2

|y − y′| ≤

3∑

k=1

Lk|xk − x′k|+ 1.0.

Sullivan & al. (Caltech) Optimal Uncertainty Quantification Warwick, 12–16 Dec. 2011 38 / 58



OUQ Using Legacy Data Hypervelocity Impact Example

Numerical Results

0.0 1 2 3 4 5 6 7 8 9 10 11 12
0
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m
ax.

prob
.
of

p
erf.

area
≤

θ

failure threshold θ/mm2

Markov’s Inequality

P[G ≤ θ] ≤ M−m
M−θ

where M := maxG given the data
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Figure: Maximum probability that perforation area is ≤ θ, for various θ, with the
data and assumptions of the previous slide, including mean perforation area
E[G(h, α, v)] ≥ m := 11.0mm2. Note close agreement of the results with
Markov’s bound.
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OUQ Using Legacy Data Hypervelocity Impact Example

Dimensional Collapse

In practice, we do not run the reduced problem (the search over A∆)
at full dimensionality.

E.g., in the previous example, relatively speaking

searches over 2× 2× 2 product measures are slow and somewhat fragile,

searches over





2× 1× 1
1× 2× 1
1× 1× 2



 measures are faster and more robust,

L(A) = L(A222) ≤ L(A112) ≤ U(A112) ≤ U(A222) = U(A).

One often sees the higher-dimensional measure “collapsing” as the
optimization calculation progresses, and this gives hints as to

which lower-dimensional problems to try;
the “key uncertainties” in the problem.
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OUQ Using Legacy Data Hypervelocity Impact Example

Dimensional Collapse

Iteration 0

Figure: Collapse of the initial 2× 2× 2 product measure to a 2× 1× 1 product
measure in another hypervelocity-impact-related setting.
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OUQ Using Legacy Data Hypervelocity Impact Example

Dimensional Collapse

Iteration 150

Figure: Collapse of the initial 2× 2× 2 product measure to a 2× 1× 1 product
measure in another hypervelocity-impact-related setting.
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OUQ Using Legacy Data Hypervelocity Impact Example

Dimensional Collapse

Iteration 200

Figure: Collapse of the initial 2× 2× 2 product measure to a 2× 1× 1 product
measure in another hypervelocity-impact-related setting.
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OUQ Using Legacy Data Hypervelocity Impact Example

Dimensional Collapse

Iteration 1000

Figure: Collapse of the initial 2× 2× 2 product measure to a 2× 1× 1 product
measure in another hypervelocity-impact-related setting.
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OUQ Using Legacy Data Redundant and Non-Binding Constraints

Redundant and Non-Binding Data

Now consider a set of observations O = {z1, . . . , zN}, N large.

Which data points (zn, G(zn)) contribute non-trivial constraints, and
actually determine the set of feasible (x0, x1, y, p)? (I.e. which data
points are relevant as opposed to being redundant?)

More importantly, which data points determine the extreme values of
the probability of failure? (I.e. which data points are binding as
opposed to being non-binding?)

Not all data points are created equal: we don’t want to solve an
optimization problem with N = 106 constraints if only 42 of them
actually matter.
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OUQ Using Legacy Data Redundant and Non-Binding Constraints

Examples of Redundant and Non-Binding Data

Consider the previous one-dimensional example, but now with two

observations at z1, z2 ∈ [0, 1]:

b
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m

(z1, G(z1))

success ↑
failure ↓

b

b
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m

(z2, G(z2))

Figure: The extremizer for the problem with data point (z1, G(z1)) is feasible
with respect to the new data point (z2, G(z2)), so the two problems have the
same extreme value. The new data point is a relevant but non-binding data point.

Sullivan & al. (Caltech) Optimal Uncertainty Quantification Warwick, 12–16 Dec. 2011 43 / 58



OUQ Using Legacy Data Redundant and Non-Binding Constraints

Algorithm for Handling Large Data Sets with Redundancies

Theorem (Sufficient Condition to be Non-Binding)

Suppose that (g, µ) ∈ A∆ is an extremizer for the legacy OUQ problem

with data set O, and let z ∈ X \ O. If (g, µ) is feasible with respect to

(z,G(z)), then the new observation is non-binding. That is, if

|g(x) −G(z)| ≤ dL(x, z) for each x ∈ supp(µ), (∗)

then the extreme values for the problems with data sets O and O ∪ {z}
are the same, and given by (g, µ).

N.B. The feasibility check (∗) is a simple algebraic check; it does not
require any (potentially slow or expensive) optimizations.
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OUQ Using Legacy Data Redundant and Non-Binding Constraints

Algorithm for Handling Large Data Sets with Redundancies

Work with two subsets of the full set of data points, O:

Oi = the data points that are enforced at iteration i;

Õi = that data points that are not enforced at iteration i, but are
potentially binding.

Sketch Algorithm

1 Initialize with O0 = ∅ and Õ0 = O.
2 Then, for i = 1, 2, . . .

1 For each z ∈ Õi−1, find the extreme values of Eµ[qg] with respect to

the data set Oi−1 ∪ {z}; let z∗ denote a/the z ∈ Õi−1 with most
extreme extreme value of Eµ[qg].

2 Let Oi := Oi−1 ∪ {z∗}.

3 Let Õi consist of those z ∈ O \ Oi such that the extremizer for Oi is
infeasible with respect to z (and hence z is possibly binding).

4 Terminate if Õi = ∅.
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OUQ for Sesmic Safety Certification

Examples III

OUQ for Sesmic Safety Certification

Knowledge Acquisition and Experimental Design
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OUQ for Sesmic Safety Certification Problem Formulation

Large-Scale Example: Seismic Safety

Consider the safety of a truss
structure under an earthquake.

The truss dynamics and material
properties are assumed to be known:

density 7860 kg ·m−3;
Young’s modulus 2.1× 1011 Pa;
yield stress 2.5× 108 Pa;
damping ratio 0.07.

Failure consists of any truss member
i’s axial strain Yi exceeding its yield
strain Si.

The uncertainty with respect to which
we perform OUQ is the unknown
earthquake ground motion that the
structure will experience.

Figure: A 198-member steel
truss electrical tower.
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OUQ for Sesmic Safety Certification Problem Formulation

Frequency Domain Formulation

An admissible set A can be constructed using the common seismological
technique of considering the mean power spectrum, which is relatively well
understood:

Matsuda–Asano shape function (mean power spectrum) with Richter
magnitude ML and site-specific natural frequency ωg and damping ξg:

sMA(ω) := C1e
C2ML

ω2
gω

2

(ω2
g − ω2)2 + 4ξ2gω

2
gω

2
.
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OUQ for Sesmic Safety Certification Problem Formulation

Frequency Domain Formulation

AMA :=

{
µ

∣∣∣∣
µ is a prob. dist. on ground motions,

and Eµ[power spectrum] = sMA

}

The typical approach is to repeatedly sample white noise, then filter
those samples through a shape function (such as the Matsuda–Asano
one) to generate samples with a “typical” power spectrum, and use
the resulting ground motions as tests for the safety of the structure.

This procedure amounts to sampling from just one possible
probability distribution µf.w.n. ∈ AMA — there are many others!.

The collection AMA can be traversed using OUQ. In our example, the
optimizer manipulates 200 3-dimensional random Fourier coefficients:
the reduced OUQ problem has dimension 600.
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OUQ for Sesmic Safety Certification Numerical Results

Numerical Results: Vulnerability Curves

min and max
probability
of failure
over AMA

ML
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Figure: The minimum and maximum probability of failure as a function of Richter
magnitude ML, where the power spectrum is constrained to have mean equal to
the Matsuda–Asano shape function sMA with natural frequency ωg and natural
damping ξg taken from the 24 Jan. 1980 Livermore earthquake. Each data point
required O(1 day) on 44+44 AMD Opterons (shc and foxtrot at Caltech).
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OUQ for Sesmic Safety Certification Knowledge Acquisition / Experimental Design

Optimal Knowledge Acquisition / Experimental Design

Range of prediction given A:

R(A) := U(A)− L(A),

R(A) small ←→ A very predictive.

Let AE,c denote those scenarios in A
that are consistent with getting
outcome c from some experiment E.

The optimal next experiment E∗ solves
a minimax problem, i.e. E∗ is the most
predictive even in its least predictive
outcome:

E∗ minimizes E 7→ sup
outcomes
c of E

R(AE,c).

bCbC
AE1 E2

bCbC

run exp’t E2

AE2,c2F1 F2

bCbC

run exp’t F1

A(E2,c2),(F1,d1)
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OUQ for Sesmic Safety Certification Knowledge Acquisition / Experimental Design

Experimental Design — Example

Consider the fixed response function

H(h, α, v) := 10.396
((

h
1.778

)0.476
(cos θ)1.028 tanh

(
v
vbl
− 1
))0.468

+
,

vbl(h, θ) := 0.579
(

h
(cos θ)0.448

)1.400
.

Given: h, θ and v are independent random variables in the cuboid

(h, α, v) ∈ [1.52, 2.67]mm × [0, π6 ]× [2.1, 2.8] km/s

and E[H(h, θ, v)] ∈ [5.5, 7.5]mm2. OUQ analysis reveals that the
least upper bound on P[H(h, θ, v) = 0] is 0.378969. . . (vs. 0.038. . . if
one just assumes a uniform distribution).

I offer to tell you (at great expense!) one of

E[h], E[θ], E[v],

V[h], V[θ], V[v], V[H(h, θ, v)].
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OUQ for Sesmic Safety Certification Knowledge Acquisition / Experimental Design

Figure: Learning the variance of h (light blue) would provide the greatest
reduction on P[H = 0] in the minimax sense, although other pieces of information
would yield lower upper bounds on P[H = 0] for particular outcomes.
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Concluding Remarks
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Conclusions

Conclusions

Optimal UQ is (an opening gambit towards) a general framework for
the sharp propagation of information/uncertainties. It can assist in
decision-making under uncertainty by

forcing the user/client and UQ practitioner to clearly state all
assumptions and information;
identifying key vulnerabilities in and assumptions about the system;
identifying what new information would be most informative.

Dimensional reduction theorems make what is mathematically The

Right Thing To Do into a computationally tractable approach.

Simple situations → exact solutions and non-trivial mathematical
insights.

More complicated situations → numerical solutions that advance the
boundaries of large-scale optimization.

Some measure of defence against GIGO: sharp propagation of
uncertainties can help to identify GI given GO.
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Conclusions

Future Directions

Many further applications of the reduction theorems and the OUQ
framework in pure and applied contexts:

Work on Samuels’ conjecture (bounds sums of independent random
variables of given mean) — with Y. Chen.
Further development of the seismic safety applications — with S.
Mitchell and the research group of S. Krishnan.
Design and prediction of biological reactions — with M. Kennedy.
OUQ characterization of the effects of material microstructure
morphology in bi-phase steels — with D. Balzani.
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Future Directions

Improvements to be made to the computational implementation of
OUQ problems:

Exploit problem structure (e.g. multilinearity, partial convexity).
Automation of dimensional collapse and reduction.
Development of algorithms for identifying redundant or non-binding
constraints, or activating a few constraints at a time à la the simplex
algorithm — with L. H. Nguyen.

OUQ with random sample data. Are there well-defined optimal

bounds on probabilities when some of the information comes from a
few (perhaps corrupted) realizations of random processes?

Connections between OUQ and Bayesian inference — (families of)
priors and posteriors on A? In particular, can one have both
robustness (posterior conclusions are stable w.r.t. changes of the prior)
and consistency (posterior concentrates around the frequentist truth)?
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Conclusions

Links

Preprint: arXiv:1009.0679v2
Under consideration at SIAM Review

Open-source optimization framework: dev.danse.us/trac/mystic
(OUQ tools in the development branch)

Sullivan & al. (Caltech) Optimal Uncertainty Quantification Warwick, 12–16 Dec. 2011 58 / 58

http://arxiv.org/pdf/1009.0679v2
http://dev.danse.us/trac/mystic

