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Prototypical UQ Problem: Reliability Certification

G0 : X → Y is a system of interest, with random inputs X distributed
according to a probability measure µ0 on X .

For some subset F ⊆ Y, the event [G0(X) ∈ F ] constitutes failure;
we want to know the probability of failure

Pµ0

[
G0(X) ∈ F

]
≡ Eµ0

[1[G0(X) ∈ F
]

︸ ︷︷ ︸
q.o.i.

]
,

or at least to know that it is acceptably small (or unacceptably large!).

Our interest lies in understanding Pµ0

[
G0(X) ∈ F

]
when G0 and µ0

are only imperfectly known, and to obtain bounds that are optimal
with respect to the known information.

Our approach is to treat this as an optimization problem over all
(g, µ) that could be (G0, µ0).
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Optimal UQ
with M. McKerns, H. Owhadi, M. Ortiz (Caltech), C. Scovel (LANL)

The key step in the Optimal Uncertainty Quantification approach is
to specify a feasible set of admissible scenarios (g, µ) that could be
(G0, µ0) according to the available information:

A =



(g, µ)

∣∣∣∣∣∣

(g, µ) is consistent with the current
information about (i.e. could be) (G0, µ0)

(e.g. legacy data, first principles, expert judgement)



 .

A encodes everything that we know about the “reality” (G0, µ0).

A priori, all we know about reality is that (G0, µ0) ∈ A; we have no
idea exactly which (g, µ) in A is actually (G0, µ0). No (g, µ) ∈ A is
“more likely” or “less likely” to be (G0, µ0) than any other.

H. Owhadi, C. Scovel, T. J. Sullivan, M. McKerns & M. Ortiz.
“Optimal Uncertainty Quantification.” Submitted to SIAM Review. arXiv:1009.0679
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Optimal UQ

A =

{
(g, µ)

∣∣∣∣
(g, µ) is consistent with the current

information about (i.e. could be) (G0, µ0)

}

Optimal bounds on the quantity of interest Pµ0
[G0(X) ∈ F ] (optimal

w.r.t. the information encoded in A) are found by minimizing/
maximizing Pµ[g(X) ∈ F ] over all admissible scenarios (g, µ) ∈ A:

L(A) ≤ Pµ0
[G0(X) ∈ F ] ≤ U(A),

where L(A) and U(A) are defined by the minimization and
maximization problems

L(A) := inf
(g,µ)∈A

Pµ[g(X) ∈ F ],

U(A) := sup
(g,µ)∈A

Pµ[g(X) ∈ F ].

Cf. imprecise probability (Boole (1854)), distributionally robust
optimization, robust Bayesian inference (surv. Berger (1984)).
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Reduction of OUQ Problems — LP Analogy

Dimensional Reduction

A priori, OUQ problems are
infinite-dimensional, non-convex,
highly-constrained, global
optimization problems.

However, they can be reduced
to equivalent finite-dimensional
problems in which the
optimization is over the
extremal scenarios of A.

The dimension of the reduced
problem is proportional to the
number of probabilistic
inequalities that describe A.

bC

bC bC

bC

bC

bC bC

bC

bC bC

bC

A

ex(A)

Figure: A linear functional on a
convex domain in Rn finds its
extreme value at the extremal
points of the domain; similarly,
OUQ problems reduce to
searches over finite-dimensional
families of extremal scenarios.
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Reduction of OUQ Problems — Theorem

Theorem (Generalized moment and indep. constraints)

Suppose that X := X1 × · · · × XK is a product of Radon spaces. Let

A :=





(g, µ)

∣∣∣∣∣∣∣∣∣∣∣

g : X → R is measurable, µ = µ1 ⊗ · · · ⊗ µK ∈
⊗K

k=1 P(Xk);
〈any conditions on g alone〉; and, for each g,

for some measurable functions ϕi : X → R and ϕ
(k)
i : Xk → R,

Eµ

[
ϕi

]
≤ 0 for i = 1, . . . , n0,

Eµk

[
ϕ
(k)
i

]
≤ 0 for i = 1, . . . , nk and k = 1, . . . ,K





A∆ :=

{
(g, µ) ∈ A

∣∣∣∣
µk ∈ ∆Nk

(Xk)
where Nk := n0 + nk

}
⊆ A.

Then L(A) = L(A∆) and U(A) = U(A∆).

Heuristic

If you have Nk pieces of information relevant to the random variable Xk,
then just pretend that Xk takes at most Nk + 1 values in Xk.
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Reduction of OUQ Problems — Comments

The reduction theorem is very general: no compactness required, just
some (weak) regularity properties:

◮ the spaces involved just need to be Radon;
◮ the functions involved must be integrable.

We generalize results of Karr (1983), which required X to be
compact and the functions to be bounded and continuous.

The proof involves Choquet theory on the probability simplex P(X )
and on

⊗K
k=1P(Xk), and uses results of Winkler (1988) and von

Weizsäcker & Winkler (1979/80) on the extreme points of
generalized moment sets and extreme values of measure-affine
functions (functions that satisfy barycentric Choquet formulae).

Similar arguments can be applied for other admissible classes A, but
generalized moment classes have computationally nice extreme points.
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Optimal Concentration Inequalities

Classical inequalities of probability theory can be seen as OUQ statements:

Example: Markov’s Inequality in OUQ Form

AMrkv := {µ ∈ P((−∞,M ]) | 0 ≤ m ≤ Eµ[X] ≤M}

U(AMrkv) := sup
µ∈AMrkv

Pµ[X ≤ 0] =
M −m

M
.

How about other deviation/concentration-of-measure inequalities?

McDiarmid’s inequality: deviations from the mean of
bounded-differences functions of independent random variables.

Hoeffding’s inequality: deviations from the mean of sums of
independent random variables.

Samuels’ conjecture: deviations of sums of non-negative independent
random variables with given means.
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McDiarmid’s Inequality

Consider

AMcD :=




(g, µ)

∣∣∣∣∣∣∣∣

g : X := X1 × · · · × XK → R,

µ =
⊗K

k=1 µk, (i.e. X1, . . . , XK independent)
Eµ[g(X)] ≥ m ≥ 0,

osck(g) ≤ Dk for each k ∈ {1, . . . ,K}





,

with componentwise oscillations/global sensitivities defined by

osck(g) := sup

{
|g(x) − g(x′)|

∣∣∣∣
x, x′ ∈ X1 × · · · × XK ,

xi = x′i for i 6= k

}
.

Theorem (McDiarmid’s Inequality, 1988)

U(AMcD) := sup
(g,µ)∈AMcD

Pµ[g(X) ≤ 0] ≤ exp

(
−

2m2

∑K
k=1D

2
k

)
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Optimal McDiarmid and Screening Effects

Theorem (Optimal McDiarmid Inequality)

For K = 1,

U(AMcD) =




0, if D1 ≤ m,

1−
m

D1
, if 0 ≤ m ≤ D1.

For K = 2, if D1 ≥ D2 ≥ 0,

U(AMcD) =





0, if D1 +D2 ≤ m,

(D1 +D2 −m)2

4D1D2
, if |D1 −D2| ≤ m ≤ D1 +D2,

1−
m

D1
, if 0 ≤ m ≤ |D1 −D2|.

There are similar explicit formulae for K = 3 (which involves solving
auxiliary cubic polynomials), K = 4 (quartics), and so on.
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Optimal McDiarmid and Screening Effects

Theorem (Optimal McDiarmid Inequality)

For K = 2, if D1 ≥ D2 ≥ 0,

U(AMcD) = 1−
m

D1
, if 0 ≤ m ≤ |D1 −D2|.

There is an explicitly-identified regime in which the worst-case bound
on the probability of failure is controlled only by m and D1.

In this regime, the statement that osc2(g) ≤ D2 carries no
information,

◮ not in the sense that it contains zero bits,
◮ but that it is a non-binding constraint: its inclusion/removal does not

change the extreme value of the OUQ problem.
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Optimal Hoeffding and the Effects of Nonlinearity

Similarly, one can consider AHfd “⊆”AMcD corresponding to the
assumptions of Hoeffding’s inequality, which bounds deviation
probabilities of sums of independent bounded random variables:

AHfd :=




(g, µ)

∣∣∣∣∣∣∣∣

g : RK → R given by
g(x1, . . . , xK) := x1 + · · · + xK ,

µ = µ1 ⊗ · · · ⊗ µK supported on a cuboid of
side lengths D1, . . . ,DK , and Eµ[g(X)] ≥ m ≥ 0





.

Hoeffding’s inequality is the bound

U(AHfd) := sup
(g,µ)∈AHfd

Pµ[g(X) ≤ 0] ≤ exp

(
−

2m2

∑K
k=1D

2
k

)
.

Interestingly, U(AHfd) = U(AMcD) for K = 1 and K = 2, but
U(AHfd) ≤ U(AMcD) for K = 3, and the inequality can be strict.
Thus, sometimes linearity is binding information, sometimes not.

Tim Sullivan (Caltech) OUQ & (Non-)Propagation of Uncertainties SIAM UQ12, 1–5 Apr. 2012 16 / 27



Overview

1 Introduction
Prototypical UQ Problem
Formulation and Reduction of Optimal UQ Problems

2 Examples of OUQ and (Non-)Propagation
Optimal Concentration Inequalities
OUQ with Legacy Data
Seismic Safety

3 Closing Remarks
Closing Remarks

Tim Sullivan (Caltech) OUQ & (Non-)Propagation of Uncertainties SIAM UQ12, 1–5 Apr. 2012 17 / 27



OUQ with Legacy Data
with M. McKerns, H. Owhadi, M. Ortiz (Caltech), D. Meyer (ex-TUM), F. Theil (Warwick)

Another interesting class of admissible function-measure pairs arises
in the case of partially observed smooth enough functions, e.g.

A =



(g, µ)

∣∣∣∣∣∣

g : X → R has prescribed modulus of continuity,
g = G0 on O ⊆ X , (some legacy data)
µ ∈ P(X ), Eµ[ϕi] ≤ 0 for i = 1, . . . , n





Note that O need not be statistically representative.

Simple examples of “smooth enough” modulus of continuity include
Lipschitz constants or Hölder conditions.

Interesting interactions between the measure-theoretic constraints and
the metric geometry of the space X ; it is essential that any Lipschitz
function on the support of a discrete measure µ ∈ ∆n(X ) can be
extended to the whole space (McShane (1934)).

T. J. Sullivan, M. McKerns, D. Meyer, F. Theil, H. Owhadi & M. Ortiz.
“Optimal uncertainty quantification for legacy data observations of Lipschitz functions.”

Submitted to Mathematical Modelling and Numerical Analysis. arXiv:1202.1928
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One Random Parameter, One Data Point

The case of a single observation in 1d can be solved explicitly.
Suppose that you observe one input-output pair (z,G(z)) ∈ [0, 12 ]×R

of a function G : [0, 1]→ R with Lipschitz constant L ≥ 0.
Explicit piecewise and discontinuous least upper bound on the
probability of failure given L, (z,G(z)), and that E[G(X)] ≥ m:

Figure: Surface plot of the least upper bound on the probability of failure, as a
function of the observed data point (z,G(z)).
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3-Parameter Hypervelocity Impact Example

Legacy data = 32 data points (steel-on-aluminium shots A48–A81,
less two mis-fires) from summer 2010 at Caltech’s SPHIR facility:

X = (h, α, v) ∈ X := [0.062, 0.125] in × [0, 30] deg × [2300, 3200]m/s.

Output G(h, α, v) = the induced perforation area in mm2; the data
set contains results between 6.31mm2 and 15.36mm2.

Failure event is [G(h, α, v) ≤ θ], for various values of θ.

Constrain the mean perf. area: E[G(h, α, v)] ≥ m := 11.0mm2.

Modified Lipschitz constraint (multi-valued data):

L =

(
175.0

in
,
0.075

deg
,
0.1

m/s

)
mm2

|y − y′| ≤

3∑

k=1

Lk|xk − x′k|+ 1.0.
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3-Parameter Hypervelocity Impact Example: Results
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Figure: Maximum probability that perforation area is ≤ θ, for various θ, with the
data and assumptions of the previous slide, including mean perforation area
E[G(h, α, v)] ≥ m := 11.0mm2. For θ ≥ 2mm2, the results are within 10−6 of
Markov’s bound, which indicates that 2 binding data points are those that
constrain the maximum of the response function; the other 30 are non-binding.
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Seismic Safety Certification
−→ H. Owhadi @ 18:00, Wed. 4 Apr., MS61, in State B

Consider the survivability of a truss structure
under an random earthquake of known
intensity drawn from an incompletely
specified probability distribution.

Consider a random ground motion u, with the
constraint that the mean power spectrum is
the Matsuda–Asano shape function sMA:

Eu∼µ

[
|û(ω)|2

]
= sMA(ω) ∝

ω2
gω

2eML

(ω2
g − ω2)2 + 4ξ2gω

2
gω

2
.

Such shape functions are a common tool in
the seismological community, but usually u is
generated by filtering white noise through s.

Further development of this approach with
S. Mitchell and the group of S. Krishnan.
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Numerical Results: Vulnerability Curves
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Figure: The minimum and maximum probability of failure as a function of Richter
magnitude ML, where the ground motion u is constrained to have Eµ[|û|

2] = the
Matsuda–Asano shape function sMA with natural frequency ωg and natural
damping ξg taken from the 24 Jan. 1980 Livermore earthquake. Each data point
required O(1 day) on 44+44 AMD Opterons (shc and foxtrot at Caltech). The
forward model used 200 Fourier modes for a 3-dimensional ground motion u.
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Optimal Knowledge Acquisition / Experimental Design

Range of prediction given A:

R(A) := U(A)− L(A),

R(A) small ←→ A very predictive.

Let AE,c denote those scenarios in A
that are consistent with getting
outcome c from some experiment E.

The optimal next experiment E∗ solves
a minimax problem, i.e. E∗ is the most
predictive even in its least predictive
outcome:

E∗ minimizes E 7→ sup
outcomes
c of E

R(AE,c).

bCbC
A

E1 E2

bCbC

run exp’t E2

AE2,c2F1 F2

bCbC

run exp’t F1

A(E2,c2),(F1,d1)
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Closing Remarks

By posing UQ as an optimization problem we
◮ place the available information (∼= constraints) about the input

uncertainties at the centre of the problem;
◮ obtain optimal bounds on output uncertainties with respect to that

information;
◮ get natural notions of information content in optimization-theoretic

terms re constraints: active/inactive, binding/non-binding, . . .

We have theoretical and numerical examples in hand showing these
phenomena at work.

We also have 100s-dimensional “real world” examples: see
H. Owhadi’s talk tomorrow for more details.

Also a huge number of open questions, especially concerning the
inclusion of random sample data, algorithmic properties of OUQ, . . .

open-source optimization framework
mystic: A Simple Model-Independent Inversion Framework

dev.danse.us/trac/mystic
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