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Prototypical UQ Problem: Reliability Certification

o Go: X — ) is a system of interest, with random inputs X distributed
according to a probability measure ug on X.

@ For some subset F C ), the event [G(X) € F| constitutes failure;
we want to know the probability of failure

Py, [Go(X) € F] =E,, [1[Go(X) € F]].
q.0.i.

or at least to know that it is acceptably small (or unacceptably large!).

@ Our interest lies in understanding P, [GO(X) c ]-"] when G and pg
are only imperfectly known, and to obtain bounds that are optimal
with respect to the known information.

@ Our approach is to treat this as an optimization problem over all
(g, i) that could be (Go, po)-
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Optimal UQ

with M. McKerns, H. Owhadi, M. Ortiz (Caltech), C. Scovel (LANL)

@ The key step in the Optimal Uncertainty Quantification approach is
to specify a feasible set of admissible scenarios (g, i) that could be
(Go, o) according to the available information:

(g, 1) is consistent with the current
A=< (g,p) information about (i.e. could be) (G, 1)
(e.g. legacy data, first principles, expert judgement)

@ A encodes everything that we know about the “reality” (G, o).

@ A priori, all we know about reality is that (Gy, 110) € A; we have no
idea exactly which (g, ) in A is actually (Go, po). No (g, ) € A is
“more likely” or “less likely” to be (G, o) than any other.

H. Owhadi, C. Scovel, T. J. Sullivan, M. McKerns & M. Ortiz.
“Optimal Uncertainty Quantification.” Submitted to SIAM Review. arXiv:1009.0679
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Optimal UQ

A={ (@]

(g, 1) is consistent with the current
information about (i.e. could be) (G, o)

@ Optimal bounds on the quantity of interest P, [Go(X) € F] (optimal

w.r.t. the information encoded in \A) are found by minimizing/

maximizing P, [g(X) € F] over all admissible scenarios (g, i) € A:

L(A) < Bpo[Go(X) € F] <U(A),

where £(.A) and U(A) are defined by the minimization and
maximization problems

L(A) = (gl;gfeA]P) wl9(X) € Fl,

U(A) := sup P,lg(X) e F].
(9.n)eA

e Cf. imprecise probability (Boole (1854)), distributionally robust
optimization, robust Bayesian inference (surv. Berger (1984)).
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Reduction of OUQ Problems — LP Analogy

Dimensional Reduction ex(A)

@ A priori, OUQ problems are
infinite-dimensional, non-convex,
highly-constrained, global
optimization problems.

@ However, they can be reduced
to equivalent finite-dimensional
problems in which the
optimization is over the Figure: A linear functional on a

extremal scenarios of A. convex domain in R™ finds its
extreme value at the extremal

points of the domain; similarly,

@ The dimension of the reduced

problem is proportional to the 0UQ problems reduce to
number of probabilistic searches over finite-dimensional
inequalities that describe A. families of extremal scenarios.
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Reduction of OUQ Problems — Theorem

Theorem (Generalized moment and indep. constraints)
Suppose that X := X1 x --- X Xk is a product of Radon spaces. Let

g: X — R is measurable, p = p1 ® -+ @ pux € ®sz1 P(Xk);
(any conditions on g alone); and, for each g,
A:= ¢ (g,1)| for some measurable functions p;: X — R and <pl(.k) X — R,
E, [gol] <O0fori=1,...,ng,
E,. [gogk)] <0fori=1,...,npandk=1,..., K

_ Ui € ANk (Xk)
Ap = {(97#) = A’ where N := ng + ng =

Then L(A) = L(Ax) and U(A) = U(An).

Heuristic

If you have N pieces of information relevant to the random variable X},
then just pretend that X takes at most N, + 1 values in X}.
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Reduction of OUQ Problems — Comments

@ The reduction theorem is very general: no compactness required, just
some (weak) regularity properties:

> the spaces involved just need to be Radon;

» the functions involved must be integrable.
We generalize results of Karr (1983), which required X’ to be
compact and the functions to be bounded and continuous.

@ The proof involves Choquet theory on the probability simplex P(X)
and on ®sz1 P(Xk), and uses results of Winkler (1988) and von
Weizsacker & Winkler (1979/80) on the extreme points of
generalized moment sets and extreme values of measure-affine
functions (functions that satisfy barycentric Choquet formulae).

@ Similar arguments can be applied for other admissible classes A, but
generalized moment classes have computationally nice extreme points.
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Optimal Concentration Inequalities

Classical inequalities of probability theory can be seen as OUQ statements:
Example: Markov’s Inequality in OUQ Form

Amrkv := {1 € P((—o0,M]) |0 <m <E,[X] < M}
M —
UAmne) = sup P, [X <0 = — 2
AU‘G-AMrkv

How about other deviation/concentration-of-measure inequalities?
@ McDiarmid's inequality: deviations from the mean of
bounded-differences functions of independent random variables.
@ Hoeffding's inequality: deviations from the mean of sums of
independent random variables.
@ Samuels’ conjecture: deviations of sums of non-negative independent
random variables with given means.
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McDiarmid's Inequality

Consider

g: X =& x - x Xg = R,
p=Q_, uk (ie. X1, ..., Xk independent)
Eulg(X)] 2 m >0,
osck(g) < Dy, for each k € {1,... K}

Amep = < (g, 1)

with componentwise oscillations/global sensitivities defined by

osci(g) = sup {|g($) —g(")]

x,m'EXlx---xXK,
x; =) fori # k '

Theorem (McDiarmid’s Inequality, 1988)

2m?
U(Amep) =  sup  P,ulg(X) < 0] <exp <—7)
i (9,1)EAMD ! Zszl D/%
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Optimal McDiarmid and Screening Effects

Theorem (Optimal McDiarmid Inequality)

For K =1,
0, if D1 <m,
UAMD) =1 - ™ 0 < m < Dy,
D,
FOI’K:2, IfDlzDQZO,
0, if D1 + Dy < m,
(D1+D2—m)2 .
, if|D1 —Dsl <m < D Do,
U(Amep) = 4D1 Dy o S s e
1—17;—1, if0 < m < |Dy — Dol

There are similar explicit formulae for K = 3 (which involves solving
auxiliary cubic polynomials), K = 4 (quartics), and so on.
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Optimal McDiarmid and Screening Effects

Theorem (Optimal McDiarmid Inequality)
For K = 2, IfDl Z D2 Z 0,

U(Ayep) =1 — Dﬂ, if0 < m < |Dy — Dy
1

@ There is an explicitly-identified regime in which the worst-case bound
on the probability of failure is controlled only by m and D;.

@ In this regime, the statement that osca(g) < Ds carries no
information,

» not in the sense that it contains zero bits,

» but that it is a non-binding constraint: its inclusion/removal does not
change the extreme value of the OUQ problem.
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Optimal Hoeffding and the Effects of Nonlinearity

@ Similarly, one can consider Ansg "C" Amcp corresponding to the
assumptions of Hoeffding's inequality, which bounds deviation
probabilities of sums of independent bounded random variables:

g: RE = R given by
g(x1,..., ) =21+ - + 2K,
Bw=p1 & - & g supported on a cuboid of
side lengths Dy, ..., Dk, and E,[g(X)] >m >0

And == < (g, 1)

@ Hoeffding's inequality is the bound

2m?
U(Anrd) == sup  Pylg(X) < 0] <exp (—7> _
(9,1) € Anita g Zszl D]%

o Interestingly, U(Ansd) = U(Amp) for K =1 and K = 2, but
U(Anq) < U(Apmep) for K = 3, and the inequality can be strict.
Thus, sometimes linearity is binding information, sometimes not.
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OUQ with Legacy Data

with M. McKerns, H. Owhadi, M. Ortiz (Caltech), D. Meyer (ex-TUM), F. Theil (Warwick)

@ Another interesting class of admissible function-measure pairs arises
in the case of partially observed smooth enough functions, e.g.

g: X — R has prescribed modulus of continuity,
A=< (g,p) g=Goon O CX, (some legacy data)
pePX), Efpi] <O0fori=1,....,n

@ Note that O need not be statistically representative.

@ Simple examples of “smooth enough” modulus of continuity include
Lipschitz constants or Holder conditions.

@ Interesting interactions between the measure-theoretic constraints and
the metric geometry of the space X’; it is essential that any Lipschitz
function on the support of a discrete measure p € A, (X) can be
extended to the whole space (McShane (1934)).

T. J. Sullivan, M. McKerns, D. Meyer, F. Theil, H. Owhadi & M. Ortiz.
“Optimal uncertainty quantification for legacy data observations of Lipschitz functions.”
Submitted to Mathematical Modelling and Numerical Analysis. arXiv:1202.1928
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One Random Parameter, One Data Point

@ The case of a single observation in 1d can be solved explicitly.

@ Suppose that you observe one input-output pair (z,G(z)) € [0, 3] x R
of a function G: [0, 1] — R with Lipschitz constant L > 0.

@ Explicit piecewise and discontinuous least upper bound on the
probability of failure given L, (z,G(z)), and that E[G(X)] > m:

1o 0.5 0o

Figure: Surface plot of the least upper bound on the probability of failure, as a
function of the observed data point (z, G(2)).
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3-Parameter Hypervelocity Impact Example

o Legacy data = 32 data points (steel-on-aluminium shots A48-A81,

less two mis-fires) from summer 2010 at Caltech’'s SPHIR facility:

X = (h,a,v) € X :=[0.062,0.125] in x [0,30] deg x [2300, 3200] m/s.

Output G/(h, o, v) = the induced perforation area in mm?; the data

set contains results between 6.31 mm? and 15.36 mm?2.

@ Failure event is [G(h, a, v) < 6], for various values of 6.

@ Constrain the mean perf. area: E[G(h, a,v)] > m = 11.0mm?2.

@ Modified Lipschitz constraint (multi-valued data):

)

175.0 0.075 0.1 9
. mm
in ’ deg 'm/s

3
ly — /| < ZLk|xk — x| + 1.0.
k=1
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3-Parameter Hypervelocity Impact Example: Results

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 | | 11.0 | | 12.0
0.715] |0.741| |0.762] |0.783] |0.805] [0.828 | |0.852| |0.878] [0.906] [0.935] [0.967| [1.000| |1.000

1.00 T
07 g9——&— 7+
: REREE
@ 050 T
0.25 T EEREE
0 —_— 4+

Figure: Maximum probability that perforation area is < 6, for various 6, with the
data and assumptions of the previous slide, including mean perforation area
E[G(h,a,v)] > m = 11.0mm?2. For § > 2mm?, the results are within 1075 of
Markov's bound, which indicates that 2 binding data points are those that
constrain the maximum of the response function; the other 30 are non-binding.
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Seismic Safety Certification
— H. Owhadi @ 18:00,

Wed. 4 Apr., MS61, in State B

@ Consider the survivability of a truss structure
under an random earthquake of known
intensity drawn from an incompletely
specified probability distribution.

@ Consider a random ground motion u, with the
constraint that the mean power spectrum is
the Matsuda—Asano shape function spa:

wngeML

Euwu[|ﬂ(w)|2] = sma(w) x (

@ Such shape functions are a common tool in
the seismological community, but usually u is
generated by filtering white noise through s.

@ Further development of this approach with
S. Mitchell and the group of S. Krishnan.
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Numerical Results: Vulnerability Curves

1.00 T /j,z o]
0.75 +
min and max
probability
of failure 0.50
over .AMA
0.25 +
0 CH—{ f f f !
6 7 8 9 10 11 12 13
My,

Figure: The minimum and maximum probability of failure as a function of Richter
magnitude My, where the ground motion u is constrained to have E,[|4|?] = the
Matsuda—Asano shape function spya with natural frequency w, and natural
damping &, taken from the 24 Jan. 1980 Livermore earthquake. Each data point
required O(1 day) on 44+44 AMD Opterons (shc and foxtrot at Caltech). The
forward model used 200 Fourier modes for a 3-dimensional ground motion .
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Figure: The minimum and maximum probability of failure as a function of Richter
magnitude My, where the ground motion u is constrained to have E,[|4|?] = the
Matsuda—Asano shape function spya with natural frequency w, and natural
damping &, taken from the 24 Jan. 1980 Livermore earthquake. Each data point
required O(1 day) on 44+44 AMD Opterons (shc and foxtrot at Caltech). The
forward model used 200 Fourier modes for a 3-dimensional ground motion .
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Optimal Knowledge Acquisition / Experimental Design

@ Range of prediction given A:

R(A) small «+— A very predictive.

o Let Ag . denote those scenarios in A
that are consistent with getting
outcome ¢ from some experiment F.

run exp't Fs

@ The optimal next experiment E* solves
a minimax problem, i.e. E* is the most
predictive even in its least predictive

outcome:
E* minimizes £ — sup R(AE,C)- run exp't Fy
outcomes
cof B A(E2102):(F1,d1)
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Closing Remarks

@ By posing UQ as an optimization problem we
> place the available information (= constraints) about the input
uncertainties at the centre of the problem;
» obtain optimal bounds on output uncertainties with respect to that
information;
» get natural notions of information content in optimization-theoretic
terms re constraints: active/inactive, binding/non-binding, . ..
@ We have theoretical and numerical examples in hand showing these
phenomena at work.

@ We also have 100s-dimensional “real world” examples: see
H. Owhadi's talk tomorrow for more details.

@ Also a huge number of open questions, especially concerning the
inclusion of random sample data, algorithmic properties of OUQ, ...

open-source optimization framework
mystic: A Simple Model-Independent Inversion Framework
dev.danse.us/trac/mystic
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