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Introduction

Introduction

applied
mathematics

probability
& statistics

scientific
computation

applied
sciences

uncertainty quantification

“UQ is the end-to-end study of the
reliability of scientific inferences.”

UQ is naturally about information flow.

Ideally, the computed relationships between
pieces of information should be as sharp as
possible.

Grand Challenges

multiphysics modelling
nuclear physics
materials science

chemistry
science of nonproliferation
uncertainty quantification
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Introduction

Prototypical UQ Problem: Reliability Certification

G0 : X → Y is a system of interest, with random inputs X distributed
according to a probability measure µ0 on X .

For some subset F ⊆ Y, the event [G0(X) ∈ F ] constitutes failure;
we want to know the probability of failure

Pµ0

[
G0(X) ∈ F

]
≡ Eµ0

[1[G0(X) ∈ F
]]

︸ ︷︷ ︸

“just” an integral
to be evaluated
— directly?
— by MC?
— by gPC?

,

or at least to know that it is acceptably small (or unacceptably large!).

Our interest lies in understanding Pµ0

[
G0(X) ∈ F

]
when G0 and µ0

are only imperfectly known, and to obtain bounds that are optimal
with respect to the known information.
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The Optimal UQ Framework General Idea

Optimal UQ

The key step in the Optimal Uncertainty Quantification approach is
to specify a feasible set of admissible scenarios (g, µ) that could be
(G0, µ0) according to the available information:

A =






(g, µ)

∣
∣
∣
∣
∣
∣

(g, µ) is consistent with the current
information about (G0, µ0)

(e.g. legacy data, models, theory, expert judgement)






.

A priori, all we know about reality is that (G0, µ0) ∈ A; we have no
idea exactly which (g, µ) in A is actually (G0, µ0). No (g, µ) ∈ A is
“more likely” or “less likely” to be (G0, µ0) than any other.

Dialogue between UQ practitioners and the domain experts is
essential in formulating — and revising — A.

H. Owhadi, C. Scovel, T. J. Sullivan, M. McKerns & M. Ortiz.
“Optimal Uncertainty Quantification.” To appear in SIAM Review. arXiv:1009.0679

T. J. Sullivan, M. McKerns, D. Meyer, F. Theil, H. Owhadi & M. Ortiz.
“Optimal uncertainty quantification for legacy data observations of Lipschitz functions.”

Submitted to Mathematical Modelling and Numerical Analysis. arXiv:1202.1928
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The Optimal UQ Framework General Idea

Optimal UQ

A =

{

(g, µ)

∣
∣
∣
∣

(g, µ) is consistent with the current
information about (i.e. could be) (G0, µ0)

}

Optimal bounds on the quantity of interest Pµ0
[G0(X) ∈ F ] (optimal

w.r.t. the information encoded in A) are found by minimizing/
maximizing Pµ[g(X) ∈ F ] over all admissible scenarios (g, µ) ∈ A:

L(A) ≤ Pµ0
[G0(X) ∈ F ] ≤ U(A),

where L(A) and U(A) are defined by the optimization problems

L(A) := inf
(g,µ)∈A

Pµ[g(X) ∈ F ],

U(A) := sup
(g,µ)∈A

Pµ[g(X) ∈ F ].

Cf. imprecise probability (Boole (1854)), distributionally robust
optimization, robust Bayesian inference (surv. Berger (1984)).
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The Optimal UQ Framework Reduction Theorems

Reduction of OUQ Problems — LP Analogy

Dimensional Reduction

A priori, OUQ problems are
infinite-dimensional, non-convex,
highly-constrained, global
optimization problems.

However, they can be reduced
to equivalent finite-dimensional
problems in which the
optimization is over the
extremal scenarios of A.

The dimension of the reduced
problem is proportional to the
number of probabilistic
inequalities that describe A.

bC

bC bC

bC

bC

bC bC

bC

bC bC

bC

A

ex(A)

Figure: A linear functional on a
convex domain in Rn finds its
extreme value at the extremal
points of the domain; similarly,
OUQ problems reduce to
searches over finite-dimensional
families of extremal scenarios.
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The Optimal UQ Framework Reduction Theorems

Reduction of OUQ Problems — Theorem

Heuristic

If you have Nk pieces of information relevant to the random variable Xk,
then just pretend that Xk takes at most Nk + 1 values in Xk.

Theorem (Generalized moment and indep. constraints)

Suppose that X := X1 × · · · × XK is a product of Radon spaces. Let

A :=







(g, µ)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

g : X → R is measurable, µ = µ1 ⊗ · · · ⊗ µK ∈
⊗K

k=1 P(Xk);
〈any conditions on g alone〉; and, for each g,

for some measurable functions ϕi : X → R and ϕ
(k)
i : Xk → R,

Eµ

[
ϕi

]
≤ 0 for i = 1, . . . , n0,

Eµk

[
ϕ
(k)
i

]
≤ 0 for i = 1, . . . , nk and k = 1, . . . ,K







A∆ :=

{

(g, µ) ∈ A

∣
∣
∣
∣

µk ∈ ∆Nk
(Xk)

where Nk := n0 + nk

}

⊆ A.

Then L(A) = L(A∆) and U(A) = U(A∆).
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The Optimal UQ Framework Optimal Concentration Inequalities

Optimal Concentration Inequalities

Classical inequalities of probability theory can be seen as OUQ statements:

Example: Markov’s Inequality in OUQ Form

AMrkv := {µ ∈ P((−∞,M ]) | 0 ≤ m ≤ Eµ[X] ≤M}

U(AMrkv) := sup
µ∈AMrkv

Pµ[X ≤ 0] =
M −m

M
.
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Optimal Concentration Inequalities

Classical inequalities of probability theory can be seen as OUQ statements:

Example: Markov’s Inequality in OUQ Form

AMrkv := {µ ∈ P((−∞,M ]) | 0 ≤ m ≤ Eµ[X] ≤M}

U(AMrkv) := sup
µ∈AMrkv

Pµ[X ≤ 0] =
M −m

M
.

How about other deviation/concentration-of-measure inequalities?

McDiarmid’s inequality: deviations from the mean of
bounded-differences functions of independent random variables.

Hoeffding’s inequality: deviations from the mean of sums of
independent random variables.

Samuels’ conjecture: deviations of sums of non-negative independent
random variables with given means.
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The Optimal UQ Framework Optimal Concentration Inequalities

McDiarmid’s Inequality

AMcD =







(g, µ)

∣
∣
∣
∣
∣
∣
∣
∣

g : X := X1 × · · · × XK → R,

µ =
⊗K

k=1 µk, (i.e. X1, . . . , XK independent)
Eµ[g(X)] ≥ m ≥ 0,

osck(g) ≤ Dk for each k ∈ {1, . . . ,K}







,

with componentwise oscillations/global sensitivities defined by

osck(g) := sup

{

|g(x) − g(x′)|

∣
∣
∣
∣

x, x′ ∈ X1 × · · · × XK ,
xi = x′i for i 6= k

}

.

Theorem (McDiarmid’s Inequality, 1988)

U(AMcD) := sup
(g,µ)∈AMcD

Pµ[g(X) ≤ 0]
!!!
≤ exp

(

−
2m2

∑K
k=1D

2
k

)
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The Optimal UQ Framework Optimal Concentration Inequalities

Optimal McDiarmid and Screening Effects

Theorem (Optimal McDiarmid for K = 1, 2)

For K = 1,

U(AMcD) =







0, if D1 ≤ m,

1−
m

D1
, if 0 ≤ m ≤ D1.

For K = 2,

U(AMcD) =







0, if D1 +D2 ≤ m,

(D1 +D2 −m)2

4D1D2
, if |D1 −D2| ≤ m ≤ D1 +D2,

1−
m

max{D1,D2}
, if 0 ≤ m ≤ |D1 −D2|.

In the highlighted case, min{D1,D2} carries no information — not in the
sense of 0 bits, but the sense of being a non-binding constraint.
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The Optimal UQ Framework Optimal Concentration Inequalities

Optimal Hoeffding and the Effects of Nonlinearity

Similarly, one can consider AHfd “⊆”AMcD corresponding to the
assumptions of Hoeffding’s inequality, which bounds deviation
probabilities of sums of independent bounded random variables:

AHfd :=







(g, µ)

∣
∣
∣
∣
∣
∣
∣
∣

g : RK → R given by
g(x1, . . . , xK) := x1 + · · · + xK ,

µ = µ1 ⊗ · · · ⊗ µK supported on a cuboid of
side lengths D1, . . . ,DK , and Eµ[g(X)] ≥ m ≥ 0







.

Hoeffding’s inequality is the bound

U(AHfd) := sup
(g,µ)∈AHfd

Pµ[g(X) ≤ 0] ≤ exp

(

−
2m2

∑K
k=1D

2
k

)

.

Interestingly, U(AHfd) = U(AMcD) for K = 1 and K = 2, but
U(AHfd) ≤ U(AMcD) for K = 3, and the inequality can be strict.
Thus, sometimes linearity is binding information, sometimes not.
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The Optimal UQ Framework Seismic Safety Certification

Seismic Safety Certification

Consider the survivability of a truss structure
under an random earthquake of known
intensity drawn from an incompletely
specified probability distribution.

Consider a random ground motion u, with the
constraint that the mean power spectrum is
the Matsuda–Asano shape function sMA:

Eu∼µ

[
|û(ω)|2

]
= sMA(ω) ∝

ω2
gω

2eML

(ω2
g − ω2)2 + 4ξ2gω

2
gω

2
.

Such shape functions are a common tool in
the seismological community, but usually u is
generated by filtering white noise through s.

We used 200 3d Fourier modes, leading to a
1200-dimensional OUQ problem.
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The Optimal UQ Framework Seismic Safety Certification

Numerical Results: Vulnerability Curves

min and max
probability
of failure
over AMA

Richter magnitude, ML
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Figure: The minimum and maximum probability of failure as a function of Richter
magnitude, ML, where the ground motion u is constrained to have Eµ[|û|

2] = the
Matsuda–Asano shape function sMA with natural frequency ωg and natural
damping ξg taken from the 24 Jan. 1980 Livermore earthquake. Each data point
required O(1 day) on 44+44 AMD Opterons (shc and foxtrot at Caltech). The
forward model used 200 Fourier modes for a 3-dimensional ground motion u.
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Future Directions, Emerging Culture Changes Optimal Knowledge Acquisition / Experimental Design

Optimal Knowledge Acquisition

Range of prediction given A:

R(A) := U(A)− L(A),

R(A) small ←→ A very predictive.

Let AE,c denote those scenarios in A
that are consistent with getting
outcome c from some experiment E.

The optimal next experiment E∗ solves
a minimax problem, i.e. E∗ is the most
predictive even in its least predictive
outcome:

E∗ minimizes E 7→ sup
outcomes
c of E

R(AE,c).

bCbC
A

E1 E2
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bCbC
A

E1 E2

bCbC

run exp’t E2

AE2,c2F1 F2

bCbC

run exp’t F1

A(E2,c2),(F1,d1)
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Future Directions, Emerging Culture Changes Optimal Knowledge Acquisition / Experimental Design

Optimal Knowledge Acquisition

The “experiments” Ei of the previous slide could be
◮ actual physical experiments on the full system of interest;
◮ partial or subsystem experiments;
◮ simulations of same.

Thus, OUQ offers a systematic application of the scientific method to
drive experimental and computational campaigns in an optimal
goal-oriented fashion.

In this sense, (O)UQ and extreme-scale scientific computing are
natural partners:

◮ UQ calculations for complex systems clearly demand large
computational resources;

◮ but those same resources are expensive — and will probably be
non-deterministic! — and so UQ offers a way to perform large
calculations on such systems.
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Future Directions, Emerging Culture Changes Optimal Statistical Estimators

“OUQ++”: Optimal Statistical Estimators

The natural next step for OUQ is to extend it to make optimal use of
random sample data.

Suppose that you are given some samples ξ1, . . . , ξn of a random
variable Ξ and have to use them to estimate some other quantity
Q(Ξ), e.g. to fit the coefficients of a model, or to make a prediction.

Prove a Theorem?

One can spend a lot of time and effort designing a good statistical
estimator or test, and proving its properties, e.g. χ2 test, BLUE, . . .

Or Compute?

OUQ++ offers a way to compute the optimal statistical estimator for your
problem, a computed formula into which to plug ξ1, . . . , ξn.
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Future Directions, Emerging Culture Changes Optimal Statistical Estimators

Analogy with Early Scientific Computing

Similarities between developments in the UQ community now and the
development of scientific computing in the era of von Neumann &al.
Transition from “compute a function for general application” to
“compute for the specific application”.

I II

PDEs Compute tables for spe-
cial functions, plug them
into PDE ansätze

Discretize the PDE and
compute directly using
FE, FD, . . .

E.g. McD McDiarmid’s inequality
p̄ ≤ e−2m2/

∑
i
D2

i

Optimal McDiarmid in-
equality, p̄ = U(AMcD)

UQ/Stats Compute tables for
statistics and plug them
into (theorem-derived)
estimators

OUQ++?
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Conclusions

Closing Remarks

By posing UQ as an optimization problem we
◮ place the available information (∼= constraints) about the input

uncertainties at the centre of the problem;
◮ obtain optimal bounds on output uncertainties w.r.t. that information;
◮ get natural notions of information content in optimization-theoretic

terms re constraints: active/inactive, binding/non-binding, . . .

We have theoretical (closed-form pen-and-paper) and real-world
(high-dimensional engineering systems) examples in hand showing
these phenomena at work.

Increasing computational resources make large problems such as OUQ
more practical to implement, cf. Bayesian methods.

Many open questions, especially concerning the inclusion of random
sample data, algorithmic properties of OUQ, &c.

Interesting times for UQ. (Cf. Hemez, Klein) The community is on
the verge of transforming UQ/statistical practice much as happened
with PDEs post-WWII.
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