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Inverse Problems

Often in science we are faced with an inverse problem of the form

y = G(u),

where
◮ u ∈ U is the unknown;
◮ y ∈ Y is some observed data;
◮ G : U → Y is the observation operator that maps u to y.

E.g. u = nanostructure, y = pair distribution function.

E.g. u = solution to some PDE, y = point/Eulerian/Lagrangian data.
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Often in science we are faced with an inverse problem of the form

y = G(u),

where
◮ u ∈ U is the unknown;
◮ y ∈ Y is some observed data;
◮ G : U → Y is the observation operator that maps u to y.

E.g. u = nanostructure, y = pair distribution function.

E.g. u = solution to some PDE, y = point/Eulerian/Lagrangian data.

Often, the observation map G is difficult to invert in practice.

Even when G is a straightforward linear operator, for a given y, there
may be no solution, or there may be multiple solutions, or a unique
solution with sensitive dependence upon y.

Often, we observe not G(u) but some noisy version of it:

y = G(u) + η.
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Least Squares

What to do when y = G(u) has no solution?

Least squares approach: find u that minimizes

‖y − G(u)‖2Y

with respect to some norm ‖ · ‖Y on Y. But there is a modelling
question: what norm to use?
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Least Squares

What to do when y = G(u) has no solution?

Least squares approach: find u that minimizes

‖y − G(u)‖2Y

with respect to some norm ‖ · ‖Y on Y. But there is a modelling
question: what norm to use?
Classical setting, linear observation operator G = A ∈ R

n×m maps
solution u ∈ R

m to observed data y ∈ R
n:

◮ without observation noise, y = Au, minimizer of ‖y −Au‖2 is given by
pseudo-inversion:

û = (A∗A)−1A∗y

◮ with observation noise η ∼ N (0, Q), Q ∈ R
m×m, y = Au+ η, the

Gauss–Markov theorem says that minimizing ‖y −Au‖2
Q−1 gives

û = (A∗Q−1A)−1A∗Q−1y,

which has mean u and covariance (A∗Q−1A)−1. This estimate also
has minimal mean-square error and minimal covariance matrix.

Tim Sullivan (Warwick) Perspectives on Inverse Problems BNL, 14–15 Aug. 2013 6 / 19



Regularization

If G is non-linear, and when U is infinite-dimensional, then there also
difficulties with the least squares approach: there may be multiple
minimizers, there may be sequences of approximate minimizers that
do not converge in U , or there may be sensitive dependence upon the
observed data y ∈ Y.

One way around this is to regularize the problem by giving preference
to solutions u that are close to a preferred candidate ū: seek u that
minimizes

‖y − G(u)‖2Y + ‖u− ū‖2U .

The choice of regularization — i.e. what norm ‖ · ‖U to put on U —
seems to be somewhat ad hoc.

A Bayesian perspective can illuminate the role of LSQ and
regularization.
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Bayesian Interpretation of LSQ

The Bayesian interpretation of these minimization problems is that
the equation

y = G(u) + η

defines the conditional distribution y|u. Suppose that Y is
finite-dimensional and that η has probability density function ρ( · ).

Let the potential Φ(u; y) be any function that differs from
ρ(y − G(u)) by an additive function of y alone, so that

ρ(y − G(u))

ρ(y)
∝ exp(−Φ(u; y)).

E.g. when η ∼ N (0, Q), take

Φ(u; y) = 1

2
‖y − G(u)‖2Q−1 .

The LSQ minimizers are the minimizers of Φ and the maximizers of
the likelihood L(y|u) ∝ exp(−Φ(u; y)).

Tim Sullivan (Warwick) Perspectives on Inverse Problems BNL, 14–15 Aug. 2013 9 / 19



Bayesian Interpretation of Regularization

Introduce a prior measure µ on U encoding a priori beliefs about u.

Bayes’ rule for the posterior distribution u|y ∼ µy:

Pµ(u|y) ∝ L(y|u)Pµ(u)

or, in language that makes more sense in functional settings,

dµy

dµ
∝ L(y|u) ∝ exp(−Φ(u; y))

Gaussian prior ←→ quadratic regularization term.

When µ is a Gaussian measure on U and the potential Φ is quadratic
in u, the posterior µy is a well-defined Gaussian measure on U .

For Gaussian µ and general “nice” Φ, µy is a well-defined but
non-Gaussian measure on U — lots of structure and information
content to interrogate.
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Richer Information Content

The potential Φ or the regularized potential may have multiple
minimizers, i.e. there may be multiple max. likelihood or max. a
posteriori estimates of u.

The posterior µy encodes more information than the location of the
minimizers, e.g. how much probability mass lies near them.

bC bC

U
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The Optimization–Bayesian Connection Reiterated

cost function Φ←→ likelihood exp(−Φ)

This concerns the observation process, the forward model (physics) G, and
the observation error/noise η.

regularization←→ prior

This concerns beliefs about which u are more or less likely. . . or even ruled
out entirely.
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Well-Posedness Results

The posterior conclusions can be shown to be robust (Lipschitz
continuous in the Hellinger distance) with respect to perturbations of
the data y and to N -dimensional approximation of the forward model
G, e.g.

dHell

(

µy, µy′
)

≤ C‖y − y′‖Y .

◮ Gaussian priors: Stuart (2010)
◮ Besov priors: Dashti & al. (2012)

It is important to first establish the validity of the Bayesian problem
on the full spaces U and Y and then discretize — as is standard
practice in numerical analysis.

◮ Cf. the continuum wave equation has finite speed of wave propagation
and so is not controllable to any desired state in finite time, whereas
finite-difference schemes are controllable in thie way.
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Robust Bayesian Interpretation

What if one does not have sufficient information to commit to a
single prior?

For underdetermined inverse problems, the prior strongly influences
the Bayesian solution even when the observation noise is small.

Even with lots of high-quality data, the posterior cannot put
probability where the prior does not — and this is particularly a
concern in functional contexts.

Your assumptions may be — are! — wrong to some degree. Ergo,
your computational framework must be one in which the basic
assumptions can be easily perturbed and turned on/off.

◮ Robust Bayesian paradigm (Berger (1994))
◮ Optimal Uncertainty Quantification framework (Owhadi & al. (2013))

Optimization → Bayesian perspective → optimization again: now
optimizing with respect to priors to find ranges of posterior
predictions.
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Robust Bayesian Interpretation

For example, there is a huge difference between specifying the prior
µ = N (0, 1) and saying that any prior with mean 0 and variance 1
would be OK. The difference in the probability of a 6σ deviation can
be a factor of
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For example, there is a huge difference between specifying the prior
µ = N (0, 1) and saying that any prior with mean 0 and variance 1
would be OK. The difference in the probability of a 6σ deviation can
be a factor of ≈ 1.4 × 107.
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Robust Bayesian Interpretation

For example, there is a huge difference between specifying the prior
µ = N (0, 1) and saying that any prior with mean 0 and variance 1
would be OK. The difference in the probability of a 6σ deviation can
be a factor of ≈ 1.4 × 107.

In practice, we have more numerous and complicated pieces of
information than the two above. Nevertheless, it’s desirable to

◮ be able to calculate the posterior range of a quantity of interest with
respect to all priors satisfying the known prior information, not just one
simple representative;

◮ to know which pieces of information (i.e. constraints) determine the
typical and extreme posterior behaviour — in optimization-theoretic
terms, this is the identification of binding constraints;

◮ to be able to play with the constraints and identify the maximally
informative next experiment.
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Handling of Constraints and Other Needs

Whether we’re doing an optimization, interrogating a Bayesian posterior,
or doing a full RB/OUQ calculation, we need software in which

information/constraints are enforced exactly without corrupting the
physics;

information/constraints and their enforcement methods are easily
adjustable/swappable;

calculations can be paused, adjusted, restarted;

calculations can be distributed across heterogeneous resources, with
interacting addressable and asynchronous components;

and a persistent database of results to ease the (re-)computing burden.
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Handling of Constraints and Other Needs

Whether we’re doing an optimization, interrogating a Bayesian posterior,
or doing a full RB/OUQ calculation, we need software in which

information/constraints are enforced exactly without corrupting the
physics;

information/constraints and their enforcement methods are easily
adjustable/swappable;

calculations can be paused, adjusted, restarted;

calculations can be distributed across heterogeneous resources, with
interacting addressable and asynchronous components;

and a persistent database of results to ease the (re-)computing burden.

From the OUQ team (McKerns & al.):

the mystic optimization framework;

the pathos distribution framework.
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