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Certification Problem

Many fields now face a need to combine often complex physical
modelling with its associated uncertainties with statistical modelling
and its uncertainties.

◮ engineering, medicine / epidemiology, insurance,
meteorology / climate / environment, . . .

A revealing example problem is certification:

Certify that a device/procedure/treatment will work satisfactorily
with high enough probability (+ not fail too badly when it does fail).

When dealing with commercial, legal or ethical issues, this can be a
very high consequence assessment about a rare event.

Seemingly obvious first steps: users, engineering designers,
policy-makers and UQ practitioners must agree upon meanings for
“work satisfactorily” and “high enough probability” — and be
prepared to perturb them!
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Certification Problem

Introduce X ∼ µ0, a random variable describing the clinical picture,
the proposed treatment regimen, &c. — all the inputs to the system.

Let g0(X) denote the corresponding outputs on applying the
proposed device/procedure.

Let q(X, g0(X)) be the quantity of interest.

We want to know
EX∼µ0

[

q(X, g0(X))
]

,

e.g. q = 1 if the body temperature rise in an MRI scan is outside
FDA-prescribed limits, and q = 0 otherwise. Hope E[q] is small!

Many UQ methods focus on efficiently evaluating this expected value
(i.e. integral), often with as few model evaluations as possible.

A pressing concern is that of epistemic uncertainty, i.e. that we never
know reality’s µ0 and g0 precisely.
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Distributional and Functional Robustness

Challenge

What should we do in a high-consequence setting when there is significant
epistemic uncertainty about what the “correct” model and probability
distributions are?

If it were a question of a single real parameter p0 known to lie in
some range A ⊂ R, we would simply optimize (minimize and
maximize) the QoI with respect to p ∈ A.

So why not do the same with respect to p = (g, µ)? Questions of
◮ problem formulation;
◮ problem execution (i.e. computability and computation); and
◮ payoff — what do we get from the exercise?
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Optimal UQ — Formulation

Just as in the single-parameter case, specify a feasible set of
admissible scenarios (g, µ) that could be (g0, µ0) according to the
available information:

A =







(g, µ)

∣

∣

∣

∣

∣

∣

(g, µ) is consistent with the current
information about (g0, µ0)

(e.g. legacy data, models, theory, expert judgement)







.

A priori, all we know about reality is that (g0, µ0) ∈ A; we have no
idea exactly which (g, µ) in A is actually (g0, µ0).

◮ No (g, µ) ∈ A is “more likely” or “less likely” to be (g0, µ0).
◮ Particularly in high-consequence settings, it makes sense to adopt a

posture of healthy conservatism and determine the best and worst
outcomes consistent with the information encoded in A.

Dialogue between UQ practitioners and the domain experts is
essential in formulating — and revising — A.

Tim Sullivan (Warwick) Optimal Uncertainty Quantification FMD2013, 11–13 Sep. 2013 9 / 25



Optimal UQ — Formulation

A =

{

(g, µ)

∣

∣

∣

∣

(g, µ) is consistent with the current
information about (i.e. could be) (g0, µ0)

}

Optimal bounds (w.r.t. the information encoded in A) on the quantity
of interest Eµ0

[q(X, g0(X))] are found by minimizing/maximizing
Eµ[q(X, g(X))] over all admissible scenarios (g, µ) ∈ A:

Q(A) ≤ Eµ0

[

q(X, g0(X))
]

≤ Q(A),

where Q(A) and Q(A) are defined by the optimization problems

Q(A) := min
(g,µ)∈A

Eµ

[

q(X, g(X))
]

,

Q(A) := max
(g,µ)∈A

Eµ

[

q(X, g(X))
]

.

Cf. generalized Chebyshev inequalities in decision analysis (Smith

(1995)), imprecise probability (Boole (1854)), distributionally robust
optimization, robust Bayesian inference (surv. Berger (1984)).
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Optimal UQ — Examples

Example: Balancing a Seesaw

You are given 1kg of sand to arrange however you wish on a seesaw (= the
real line). Your challenge is to make the region x ≥ t, t ≥ 0, as heavy as
possible subject to two constraints:

the centre of mass of the sand (and seesaw) must be at x = 0; and

all the sand must be contained in a region of length ≤ L (with L ≥ t).

x = 0 x = t

Optimal UQ can be seen as the extension of the same basic idea to
complicated settings: no hope of a pen-and-paper solution, but can
compute a numerical solution.
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Reduction of OUQ Problems — LP Analogy

Dimensional Reduction

A priori, OUQ problems are
infinite-dimensional, non-convex*,
highly-constrained, global
optimization problems.

However, they can be reduced to
equivalent finite-dimensional
problems in which the
optimization is over the extremal
scenarios of A.

The dimension of the reduced
problem is proportional to the
number of pieces of information
used to describe A.

bC

bC bC

bC

bC

bC bC

bC

bC bC

bC
A

ex(A)

Figure : A linear functional on a
convex domain in R

n finds its
extreme value at the extremal
points of the domain; similarly,
OUQ problems reduce to
searches over finite-dimensional
families of extremal scenarios.

*But see e.g. Bertsimas & Popescu (2005) and Smith (1995) for convex special cases.
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Optimal UQ — Examples

Example: Chebyshev’s Inequality in OUQ Form

X has known mean, known variance:

ACh :=
{

µ ∈ P(R)
∣

∣Eµ[X] = 0 and Eµ[X
2] ≤ σ2

}

Least upper bound on probability of deviations of X larger than t:

P (ACh) := sup
µ∈ACh

Pµ

[

|X| ≥ t
]

=
σ2

t2
.

Can prove this bound using pen and paper or by computing using the
reduction theorems (2 constraints =⇒ enough to consider 3 distinct
values for X).

Optimal UQ can be seen as the extension of the same basic idea to
complicated settings: no hope of a pen-and-paper solution, but can
compute a numerical solution.
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Optimal UQ — Examples

Examples past. . .

Hypervelocity impact (e.g. micrometeorite on satellite)
◮ with simple surrogate model;
◮ with full-physics model validated against experiment;
◮ with inextensible legacy data set from experiment.

Seismic safety of an electrical transmission tower
◮ with random earthquake in time domain;
◮ with random earthquake in frequency domain (Matsuda–Asano mean

power spectrum)

Energy storage placement in power grids (wind generation data).

Optimal statistical inequalities

. . . and present / near future. . .

Multilayer graphene composites for photovoltaic applications.

Performance certification for power generation turbines.

Assessment of catastrophe risks for insurance and reinsurance.
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Optimal UQ — Payoff

Obvious results of OUQ analyses are rigorous bounds on output
uncertainties that are sharp with respect to the specified information.
If you don’t like the results, then you need more information!

P
0 [g

0 (X
)
≤

t]

performance level, t

0%

100%

value at risk
prediction

probability of
performance
prediction

Abrupt jumps or kinks are common in actual plots of this type: they
indicate changeovers among the pieces of information that control the
bounds — i.e. the binding constraints — for given t.

But there are more subtle benefits to this approach. . .
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Optimal UQ — Payoff

Note that the problem formulation and the details of the numerical
optimization are separate issues.

The pieces of information about the unknowns (the constraints) are
the central objects.

By placing information centre-stage, and requiring all assumptions to
be stated explicitly, we

◮ identify key pieces of information — the ones that control the solution
of the optimization problem and make the difference between verdicts
of “safe” and “unsafe”;

◮ are forced to design UQ/optimization frameworks in which constraints
are easily perturbed and swapped in/out, as opposed to hard-coded
(cf. keynote talk by Mike Hawkins on Thu.);

◮ foster the reproducibility of results and open science (cf. keynote talk
by Will Schroeder on Wed.).
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Application to Bayesian Inference

What does the OUQ perspective have to say about Bayesian
methods, which are increasingly popular?

Here, the unknown/variable probability distribution is the prior.

Are posterior conclusions robust with respect to changes of the prior?

Most statisticians would acknowledge that an analysis is not

complete unless the sensitivity of the conclusions to the

assumptions is investigated. Yet, in practice, such sensitivity

analyses are rarely used. This is because sensitivity analyses

involve difficult computations that must often be tailored to the

specific problem. This is especially true in Bayesian inference

where the computations are already quite difficult.

— L. Wasserman, M. Lavine, and R. L. Wolpert. J. Statist. Plann.

Inference, 37(3):307–316, 1993.
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Bayesian Models

The ingredients of a Bayesian model:

The prior distribution π on a parameter space Θ.

The model class (or likelihood), a function L : Θ → P(D).

Given data d ∈ D, we update the prior to a posterior by conditioning
using Bayes’ rule:

π(θ|d) ∝ L(d|θ)π(θ).

The application of Bayes’ rule to scientific contexts has generated 250
years of controversy, with philosophical and practical objections:

Twice it has soared to celebrity, twice it has crashed, and it is

currently enjoying another boom.

— B. Efron. Science 340:1177–1178, 2013.

Notable successes have included the location of the wrecks of USS
Scorpion, Air France 447, and Nate Silver’s correct prediction of the
2012 presidential vote in all 50 states.
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Bayesian Misspecification

In (frequentist analyses of) Bayesian statistics, misspecification arises
when there is no member of the model class {L( · |θ) | θ ∈ Θ} that agrees
precisely with the real data-generating distribution.

In practice, Bayesian inference is employed under misspecification

all the time, particularly so in machine learning applications.

While sometimes it works quite well under misspecification, there

are also cases where it does not, so it seems important to

determine precise conditions under which misspecification is

harmful — even if such an analysis is based on frequentist

assumptions.

— P. D. Grünwald. “Bayesian Inconsistency under Misspecification.”

(Emphasis in original.)
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Brittleness Theorem Owhadi, Scovel & S., 2013

Misspecification has profound consequences for Bayesian robustness
— in fact, Bayesian inferences become extremely brittle as a function
of measurement resolution δ.

If the model is misspecified, and there are possible observed data that
are arbitrarily unlikely under the model, then under fine enough
measurement resolution the posterior predictions of nearby priors differ
as much as possible regardless of the number of samples observed.

Figure. As measurement
resolution δ → 0, the
smooth dependence of the
prior value on the prior
(top-left) shatters into a
patchwork of diametrically
opposed posterior values.
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Brittleness Theorem Owhadi, Scovel & S., 2013

What does this mean in plain terms?

A regulator specifies some “rules” for device assessors to play by —
features that any OK prior must have.

Consider two rules-compliant prior distributions, e.g. yours and mine.

The two corresponding posteriors can give arbitrarily different values
for the quantity of interest. E.g. “the proposed device is safe”, versus
“it is unsafe”. Whom should we believe?

This phenomenon persists no matter how close the regulator demands
the two priors to be, regardless of the amount of data, and is
exacerbated by high-precision data.
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“it is unsafe”. Whom should we believe?

This phenomenon persists no matter how close the regulator demands
the two priors to be, regardless of the amount of data, and is
exacerbated by high-precision data.

The good news is that Bayesian inference is robust when applied to
finite and discrete systems.

However, we should be cautious about applications to continuum
systems without further evidence of well-specification, supporting
(frequentist) accuracy analysis, and confession of all assumptions.
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How Good is Good Enough?

On a shallow level, “good enough” (or “not too bad”) means an
understanding of the typical case and the extreme cases.

Tim Sullivan (Warwick) Optimal Uncertainty Quantification FMD2013, 11–13 Sep. 2013 24 / 25



How Good is Good Enough?

On a shallow level, “good enough” (or “not too bad”) means an
understanding of the typical case and the extreme cases.

What does the OUQ perspective say about what “good enough” means?

Explicit statement of requirements / metrics.

Explicit statement of assumptions and information.

Implementations that respect the assumptions and are open to
adjustment.
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On a shallow level, “good enough” (or “not too bad”) means an
understanding of the typical case and the extreme cases.

What does the OUQ perspective say about what “good enough” means?

Explicit statement of requirements / metrics.

Explicit statement of assumptions and information.

Implementations that respect the assumptions and are open to
adjustment.

Such frameworks are good because they support

open, reproducible science;

meaningful dialogue among experts in the various knowledge
domains; and

robust procedural workflows and software frameworks that are
processors converting assumptions/information into conclusions with
high (verified, validated, quantified) degree of optimality.
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Thank You

S. Han, U. Topcu, M. Tao, H. Owhadi & R. M. Murray,
Proc. Amer. Control Conf., 2013

H. Owhadi, C. Scovel & T. J. Sullivan, arXiv:1304.6772

H. Owhadi, C. Scovel & T. J. Sullivan, arXiv:1308.6306

H. Owhadi, C. Scovel, T. J. Sullivan, M. McKerns & M. Ortiz,
SIAM Review 55(2):271–345, 2013. arXiv:1009.0679

T. J. Sullivan, M. McKerns, D. Meyer, F. Theil, H. Owhadi &
M. Ortiz, Math. Model. Numer. Anal. 47(6):1657–1689, 2013.
arXiv:1202.1928

OUQ implementation in open-source Mystic optimization framework:
http://pythonhosted.org/mystic
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