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Abstract. In the present paper we explain the basic ideas of Robust
Perron Cluster Analysis (PCCA+) and exemplify the different applica-
tion areas of this new and powerful method. Recently, Deuflhard and
Weber [5] proposed PCCA+ as a new cluster algorithm in conformation
dynamics for computational drug design. This method was originally de-
signed for the identification of almost invariant subsets of states in a
Markov chain. As an advantage, PCCA+ provides an indicator for the
number of clusters. It turned out that PCCA+ can also be applied to
other problems in life science. We are going to show how it serves for the
clustering of gene expression data stemming from breast cancer research
[20]. We also demonstrate that PCCA+ can be used for the clustering
of HIV protease inhibitors corresponding to their activity. In theoretical
chemistry, PCCA+ is applied to the analysis of metastable ensembles in
monomolecular kinetics, which is a tool for RNA folding [21].

1 Introduction

The application and improvement of cluster algorithms plays an important role
in several areas of computational life science. Given a number of N objects
q ∈ Ω with certain features, we are interested in identifying objects with similar
behaviour in order to combine them into NC clusters. For this purpose, we want
to construct membership functions yi : Ω → [0, 1], i = 1, . . . , NC , NC � N ,
which form a partition of unity. Then, each object in Ω can be assigned to the
clusters with certain weights given by the values of the membership functions.
A cluster can be considered as a vector that remains almost invariant under the
action of a matrix T , i.e.

Tyi ≈ yi. (1)

In molecular dynamics, T is the discretised version of a spatial transition op-
erator [14] and clusters are conformations for which the large scale geometric
structure is conserved. In this case, the matrix T contains transition probabil-
ities between different conformations. In general, T must be a row stochastic
matrix. For example, it can result from the normalisation of a symmetric ma-
trix whose entries represent some pairwise similarity measure, e.g. a covariance
matrix.
Equation (1) is similar to an eigenvalue problem for an eigenvalue near λ = 1. A
perturbation analysis shows that the space of eigenvectors of T corresponding to



eigenvalues near λ = 1 indicates a partition of Ω into the clusters we are looking
for [4]. In Robust Perron Cluster Analysis, the space spanned by the member-
ship functions yi equals the space of the NC first eigenvectors of T . In this case,
the number NC of clusters equals the number of discrete eigenvalues of T near
λ1 = 1. If each object is uniquely assigned to a cluster, then a rearranging of the
rows and columns of T results in an almost block diagonal matrix. Therefore,
the identification of clusters can also be seen as a detection of the almost block
diagonal structure of T .
There are several other spectral methods which can be applied to reduce the di-
mensionality of given data. For example, Principle Component Analysis (PCA)
and Independent Component Analysis (ICA) use the eigenvectors of a covariance
matrix to compute a set of important directions within the data. However, they
fail to separate non-overlapping data sets. An illustrative example can be found
in [7]. PCCA+ was especially designed to identify spatially separated clusters
and is close to Laplacian projection methods used in graph partitioning [20] [18],
for example the relaxation of the normalised cut minimisation problem used by
Shi and Malik [16] and the Multicut Algorithm by Meila and Shi [11]. The main
differences between Robust Perron Cluster Analysis and these methods are:

– The results of Perron Cluster Analysis are given in terms of almost charac-
teristic functions, i.e. fuzzy sets.

– These functions are a simple linear transformation of the eigenfunctions of
the operator T .

– There is a detailed perturbation analysis for the PCCA+ approach based on
Markov chain theory, which provides robustness of this method.

2 Robust Perron Cluster Analysis Approach

The basis for Robust Perron Cluster Analysis is a stochastic matrix T ∈ IRN×N

with an eigenvalue cluster near 1. The clusters we are looking for are represented
by vectors yi, i = 1, . . . , NC , combined into a nonnegative matrix Y ∈ IRN×NC .
In order to meet the partition-of-unity constraint, Y has to be row stochastic,
see also [3]. Since Y should fulfil

Tyi ≈ yi,

the idea of PCCA+ is to construct Y as a linear transformation of the matrix
X ∈ IRN×NC , which contains the NC first eigenvectors of T corresponding to
eigenvalues near λ1 = 1, see [5]. Therefore, the task for PCCA+ is to find a
corresponding transformation matrix A ∈ IRNC×NC , such that

Y = AX

is a nonnegative, row stochastic matrix. Since there are many feasible solutions,
one searches for a solution which maximises the functional

n∑
i=1

〈yi, T yi〉π
〈yi, e〉π

→ max,



where e = (1, . . . , 1) is a constant vector, yi is the ith column of Y and 〈·〉π is a
π-weighted inner product with the unique invariant row vector which meets π =
πT . If the stochastic matrix T is the discretisation of a transition operator, then
this is equivalent to the maximisation of metastability [5]. If the stochastic matrix
is constructed based on a geometrical cluster problem (see below), then this
optimisation problem minimises the overlap between different clusters. Instead
of solving a constrained optimisation problem, another approach tries to find
an optimal initial guess A wrt. the maximisation problem without regarding
the non-negativity constraint for Y [20]. The smallest entry of Y , the so-called
minChi-indicator, measures the feasibility of the initial guess as a solution of the
clustering. This is also applied in order to determine NC , i.e. the correct number
of clusters. The minChi-indicator is used for the geometrical cluster problems
shown in this paper.

For an application of Robust Perron Cluster Analysis in conformation dy-
namics see [5]. Now, we will give some other application examples for PCCA+.

3 Graph-based Spectral Clustering via PCCA+

Suppose we want to cluster No ∈ IN objects, each of them described by Nf ∈ IN
features given by real numbers. That means we have to apply PCCA+ to an No×
Nf real valued object-feature-matrix X. As input for PCCA+, we need an No×
No diagonalisable stochastic matrix T which measures the similarity between
objects in some sense. For this purpose, T is constructed out of a symmetric
nonnegative matrix W ∈ No×No by scaling its rows to row sum 1, see [20]. The
symmetric matrix W can be seen as weight matrix for an undirected graph where
each object is represented by a vertex. The pairwise similarities between these
vertices are expressed by weights of the corresponding edges. One example for
computing this weight matrix can be taken from our analysis of gene expression
data [20] in cooperation with the Max Planck Institute for Molecular Genetics.
With some parameter β > 0, the weight W (i, j) of the edge between object i
and object j is defined as

W (i, j) = exp(−β d2(i, j)),

where d(i, j) denotes the standard Euclidean distance between the ith and the
jth row of X interpreted as vector in the Nf -dimensional space.

As an example, we examined the expression data of Nf = 2000 genes taken
from No = 50 breast cancer patients. As preprocessing, we rescaled the features
to zero mean and variance 1. After constructing T , we applied PCCA+ and got
two clusters1 y1, y2. Each patient i ∈ {1, . . . , No} was assigned to the cluster
k = 1, 2, for which yk > 0.5. In Figure 1 we compared the survival time of these
two groups of patients and recognised a significant difference. The low p-value
denotes the probability, that the difference of these two curves arises randomly.
For a comparison with other clustering methods see [20].
1 The minChi-indicator also allowed more than two clusters, NC = 2 has been chosen

in order to compare the results of PCCA+ with results from literature [20].
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Fig. 1. Comparison of survival curves resulting from PCCA+ applied to gene expres-
sion data of breast cancer research.
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Fig. 2. Two clusterings of seven HIV protease inhibitors on the basis of 2311 HIV
mutants. The computation of the activity coefficients differs between the two pictures.
The three membership functions y1, y2 and y3 are plotted as solid, dash and dash-dot
line.



A second example for a graph based clustering turns up in the research of
HIV protease inhibitors. We examined data kindly provided by Martin Däumer
and Rolf Kaiser from the Institute of Virology, Cologne University, and Joachim
Selbig from the Department of Biochemistry and Biology at the University of
Potsdam [1]. The aim of this project is to find out if structural similarities
between different inhibitors imply functional similarities. In a first step it was
examined how good No = 7 different protease inhibitors bind to Nf = 2311
different mutants of HIV protease which are described by their genotype. This
behaviour was measured by the activity coefficients. Our task was to identify
those inhibitors with the same functional behaviour. For the computation of
the 7× 7-similarity matrix W , the pairwise correlation coefficients of the seven
activity “vectors” have been shifted and normalised to the interval [0, 1]. Then
the stochastic matrix T has been constructed and PCCA+ has been applied. The
result was a 3-clustering of the protease inhibitors indicating different behaviour
according to the HIV protease mutants. For a verification of the result, we used
the fact that the activity coefficients can be computed in different ways. PCCA+
has been applied to these different activity coefficients and we always got similar
results. In Figure 2 the results of two of the clusterings are shown. The x-axis
shows the seven protease inhibitors. Their grades of membership, i.e. the curves
for y1, y2 and y3, are plotted in different line styles on the y-axis. Each HIV
protease can be assigned to the cluster for which the corresponding grade of
membership is maximal, i.e. for both experiments we get the result

cluster1 = {1, 2, 6, 7}, cluster2 = {3, 4}, cluster3 = {5}.

Now it remains to examine the structural similarities between the different pro-
tease inhibitors which is still ongoing work. If it turned out that the structure
of the inhibitors allows the same clustering, laboratory work could be done in a
more tightly focused way.

4 Analysis of Metastable Ensembles in Monomolecular
Kinetics

The understanding of transition pathways between different conformations of a
molecule is an important issue in structural biology. Although the restriction of
degrees of freedom to a few dihedral angles significantly reduces the complexity
of the problem, this is still very difficult. Often, scientists are interested in single
pathways, for example those over lowest energy barriers [2]. On the other hand,
it is well known that molecular kinetics is not purely deterministic. All kinds
of trajectories could appear, some with higher probability than others. There-
fore, it seems natural to consider population probabilities. Starting with a given
probability density in position space, we are interested in the evolution of the
density to figure out intermediate states.
A description of molecular dynamics based on all conformations is unfeasible
for large molecules. Therefore, we work with a set concept based on metastable



conformations as introduced in [14]. First, we reduce the position space to a
number of N states represented by basis functions [19] or boxes [15]. Then, we
cluster states into metastable conformations by applying PCCA+ to the tran-
sition rate matrix Q. The infinitesimal generator Q of T τ provides important
chemical information concerning transition pathways of single molecules. Given
an initial weighting xA of the states, one can compute the corresponding weights
and the spatial configuration density at each time step t ∈ [0,∞) via

ẋ = Q>x, with T τ = exp(τQ). (2)

This is the desired dynamic in configuration space, which is not based upon
single molecules but upon ensembles.
It is easy to verify that the eigenvectors, which are essential for PCCA+, remain
the same for the transition rate matrix Q. Assume, Q is diagonalisable by some
nonsingular matrix X, i.e.

Q = XΘX−1 = Xdiag(θ1, . . . , θp)X−1.

Then

T τ = exp(τQ) = X exp(τΘ)X−1 = Xdiag(exp(τθ1), . . . , exp(τθp))X−1,

see [8]. Since exp(0) = 1, an eigenvalue cluster of T τ at 1 corresponds to an
eigenvalue cluster of Q at 0. The number NC of metastable sets is determined
by this number of eigenvalues.
The entry qij , i 6= j, can be considered as the reaction rate of the monomolecular
reaction

xi ⇀ xj

where xi stands representatively for the weight or “concentration” of state i.
Equation (2) is not very interesting because the kinetics simply converges against
the equilibrium distribution π. If one is interested in a simulation of a transi-
tion from metastable conformation A to a metastable conformation B and the
corresponding transition behaviour, then (2) has to be solved as an initial value
problem with initial distribution xA and an absorbing end state given by the
distribution xB . Chemically, one would permanently eliminate conformation B
out of the ensemble in order to push the reaction into the direction of this prod-
uct. Mathematically this can be done by projection of x onto the orthogonal
complement of the desired end point xB before applying Q. Thus, the absorbing
kinetics equation is:

ẋ(t) = Q> (x− 〈x, xB〉
〈xB , xB〉

xB), x(0) = xA. (3)

The rate matrix Q can be obtained directly from the transition probability ma-
trix T , but on the other hand, it offers a new approach to identify metastable
conformations if the transition probability matrix is not available or difficult to
compute. Furthermore, we are able to reduce our model not only to a set of basis
functions whose number can be very large, but also to the few metastable sets
which contain all important information about the system.
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Fig. 3. Matlab [6] plot of a conformation kinetics simulation. Left: From g+/t con-
formation of pentane to the t/g+ conformation. Right: From t/g+ conformation of
pentane to the g+/t conformation. Due to symmetry of pentane, both kinetics simu-
lations should be equivalent. Differences result from unsymmetric approximations of
transition probabilities.

Fig. 4. Volume rendering of two conformations of pentane (left and right) and the
corresponding transition macrostate (middle) in amira/amiraMol [17],[13].



Example: n-Pentane. We present the application to the n-pentane molecule
CH3(CH2)3CH3 which was modelled with Merck Molecular Force Field [9][10]
at a temperature of 300K. The rate matrix Q was calculated directly from the
transition probability matrix T . T itself resulted from a conformation dynam-
ics simulation with ZIBgridfree, a program package based on meshfree methods
which was developed at Zuse-Institute Berlin, see [19],[12].
We found 9 eigenvalues of Q close to 1,

λ = {1.0000, 0.9988, 0.9985, 0.9978, 0.9976, 0.9967, 0.9947, 0.9601, 0.9589},

followed by a gap to the 10th eigenvalue λ10 = 0.8170. This corresponds to 9
metastable conformations which can be distinguished according to the orienta-
tion of one of the two dihedral angles (±g and t denote the ± gauche and trans
orientations):

conformations = {−g/t, t/+g,−g/−g, t/t, t/−g,+g/t,+g/+g,−g/+g,+g/−g}

The results for a (g +/t) ⇀ (t/g+) transition of pentane and the reverse ex-
periment are shown in Figure 3. Only the concentrations of the conformations
(g +/t), (t/g+) and (t/t) are plotted. The corresponding Matlab algorithm needs
less than 1 second CPU time for the computation of a 20ps reaction kinetics
simulation with a 60×60-rate matrix Q, i.e. the numerical simulation of the “re-
duced model” is much faster than a full dynamics simulation of the same length.
Figure 3 can be interpreted as follows. The conformational change from (g +/t)-
pentane to (t/g+) crosses the (t/t) conformation which can be seen as transition
state. The transition from (t/g+)-pentane into (g +/t)-pentane is visualised in
Figure 4. The left picture shows the start conformation (t/g+), the right one the
end conformation (g +/t). At each step of the 20ps kinetics simulation, a similar
density plot can be computed. The picture in the middle shows the transition
state at 3.5ps simulation length. It can be considered as the mean conformation
at this particular time.

Even though pentane is a very simple example, it illustrates very well the
concept behind our method. From the chemical point of view, one could imag-
ine that we start with a mixture of different molecules of the same chemical
substance from which we know how the single molecules are distributed to the
clusters. In this example, they all belong to the conformation (g + /t). As time
goes on, this distribution is driven towards equilibrium. Now, for example, sup-
pose that molecules in a certain conformation are especially appropriate for a
certain docking process, i.e. they do not contribute to the kinetics after this
docking has taken place. This conformation is the target conformation of the
reaction equation, here (t/g +). The reaction kinetics calculation delivers infor-
mation about the time scale of this process. Furthermore, it shows which other
conformations are favoured in the meantime which can be of interest if several
docking processes take place.



5 Conclusion

In the present paper, we have shown that Robust Perron Cluster Analysis
(PCCA+) is a powerful tool for many cluster problems arising in computational
life science. As input, PCCA+ expects a stochastic matrix T which can con-
tain dynamics/kinetics information or similarity values from geometrical cluster
problems. The aim of PCCA+ is to recover the almost block diagonal structure
of T . The corresponding clustering is given in terms of a membership function
for each of these “blocks”. The number of almost-blocks in the matrix T need not
to be known a priori. It is provided by the number of eigenvalues close to 1 or by
the minChi-value. The property of the membership functions to be linear com-
binations of eigenfunctions allows their direct use in conformation kinetics. We
prefer PCCA+ because it is easy to implement and has shown to be competitive
with other clustering methods like Supervised Principal Component Analysis
[20].
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